Wavelet-fractional Fourier transforms

被引:0
|
作者
袁琳 [1 ]
机构
[1] College of Mathematics Physics and Information, Zhejiang Normal University
关键词
multiresolution analysis; fractional Fourier transform; wavelets-fractional Fourier trans- form;
D O I
暂无
中图分类号
O174.22 [傅里叶积分(傅里叶变换)];
学科分类号
摘要
This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for L 2 (R) instead of Hermite-Gaussian functions. The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [21] Simplified fractional Fourier transforms
    Pei, Soo-Chang
    Ding, Jian-Jiun
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17 (12): : 2355 - 2367
  • [22] On the relationship between the Fourier and fractional Fourier transforms
    Zayed, AI
    IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (12) : 310 - 311
  • [23] Fractional cosine and sine transforms in relation to the fractional fourier and hartley transforms
    Alieva, T
    Bastiaans, MJ
    SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 561 - 564
  • [24] AN IMAGE WATERMARKING SCHEME BASED ON WAVELET AND MULTIPLE-PARAMETER FRACTIONAL FOURIER TRANSFORMS
    Ouhsain, Mohamed
    Abdallah, Emad E.
    Ben Hamza, A.
    ICSPC: 2007 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2007, : 1375 - 1378
  • [25] Continuous quaternion fourier and wavelet transforms
    Bahri, Mawardi
    Ashino, Ryuichi
    Vaillancourt, Remi
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2014, 12 (04)
  • [26] SELF FOURIER FUNCTIONS AND FRACTIONAL FOURIER-TRANSFORMS
    MENDLOVIC, D
    OZAKTAS, HM
    LOHMANN, AW
    OPTICS COMMUNICATIONS, 1994, 105 (1-2) : 36 - 38
  • [27] Multiplicity of fractional Fourier transforms and their relationships
    Cariolaro, G
    Erseghe, T
    Kraniauskas, P
    Laurenti, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (01) : 227 - 241
  • [28] FRACTIONAL FOURIER-TRANSFORMS AND IMAGING
    BERNARDO, LM
    SOARES, ODD
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (10): : 2622 - 2626
  • [29] The generalized discrete fractional fourier transforms
    Oraintara, S
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1185 - 1188
  • [30] Fractional Fourier transforms on LP and applications
    Chen, Wei
    Fu, Zunwei
    Grafakos, Loukas
    Wu, Yue
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 71 - 96