Wavelet-fractional Fourier transforms

被引:0
|
作者
袁琳 [1 ]
机构
[1] College of Mathematics Physics and Information, Zhejiang Normal University
关键词
multiresolution analysis; fractional Fourier transform; wavelets-fractional Fourier trans- form;
D O I
暂无
中图分类号
O174.22 [傅里叶积分(傅里叶变换)];
学科分类号
摘要
This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for L 2 (R) instead of Hermite-Gaussian functions. The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [1] Wavelet-fractional Fourier transforms
    Yuan Lin
    CHINESE PHYSICS B, 2008, 17 (01) : 170 - 179
  • [2] Joint Wavelet-Fractional Fourier Transform
    宋军
    何锐
    袁好
    周军
    范洪义
    Chinese Physics Letters, 2016, (11) : 22 - 25
  • [3] Joint Wavelet-Fractional Fourier Transform
    宋军
    何锐
    袁好
    周军
    范洪义
    Chinese Physics Letters, 2016, 33 (11) : 22 - 25
  • [4] Joint Wavelet-Fractional Fourier Transform
    Song, Jun
    He, Rui
    Yuan, Hao
    Zhou, Jun
    Fan, Hong-Yi
    CHINESE PHYSICS LETTERS, 2016, 33 (11)
  • [5] Combinatorial optical complex wavelet-fractional Fourier transform
    Lv, Cui-Hong
    Tang, Fei-Fei
    Shi, Li-Juan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (07) : 1146 - 1151
  • [6] FRACTIONAL FOURIER-TRANSFORMS, WAVELET TRANSFORMS, AND ADAPTIVE NEURAL NETWORKS
    LEE, SY
    SZU, HH
    OPTICAL ENGINEERING, 1994, 33 (07) : 2326 - 2330
  • [7] Optical wavelet-fractional squeezing combinatorial transform
    吕翠红
    蔡莹
    晋楠
    黄楠
    Chinese Physics B, 2022, (02) : 246 - 253
  • [8] Optical wavelet-fractional squeezing combinatorial transform
    Lv, Cui-Hong
    Cai, Ying
    Jin, Nan
    Huang, Nan
    CHINESE PHYSICS B, 2022, 31 (02)
  • [9] WAVELET TRANSFORMS VERSUS FOURIER-TRANSFORMS
    STRANG, G
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 28 (02) : 288 - 305
  • [10] On Hilbert, Fourier, and wavelet transforms
    Penner, RC
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (06) : 772 - 814