8-ranks of Class Groups of Some Imaginary Quadratic Number Fields

被引:0
作者
Xi Mei WU Qin YUE Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjing PRChina State Key Laboratory of Information Security Graduate School of Chinese Academy of SciencesBeijing PRChina [210016 ,100039 ]
机构
关键词
class group; Rédei matrix; reciprocity law;
D O I
暂无
中图分类号
O153.4 [域论];
学科分类号
070104 ;
摘要
<正> Let F=Q((-p1p2)1/2) be an imaginary quadratic field with distinct primes p1≡p2≡1 mod8 and the Legendre symbol ((p1)/(p2))=1.Then the 8-rank of the class group of F is equal to 2 if and onlyif the following conditions hold:(1) The quartic residue symbols ((p1)/(p2))4=((p2)/(p1))4=1;(2) Either bothp1 and p2 are represented by the form a2+32b2 over Z and p2h+(2p1)/4=x2-2p1y2 x,y ∈ Z,or bothp1 and p2 are not represented by the form a2+32b2 over Z and p2h+(2p1)/4=ε(2x2-p1y2),x,y ∈ Z,ε∈{4-1},where h+(2p1) is the narrow class number of Q((2p1)1/2).Moreover,we also generalize theseresults.
引用
收藏
页码:2061 / 2068
页数:8
相关论文
共 35 条
[31]   Modification of Cohen-Lenstra heuristics for ideal class groups and numbers of certain real quadratic fields [J].
Washington, LC ;
Zhang, XK .
CHINESE SCIENCE BULLETIN, 1997, 42 (23) :1959-1962
[32]   Capitulation of the 2-class group of some cyclic number fields with large degree [J].
Mouhib, Ali .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (14-15) :1927-1933
[33]   The exponent three class group problem for some real cyclic cubic number fields [J].
Louboutin, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :353-361
[34]   The structure of some minus class groups, and Chinburg's third conjecture for abelian fields [J].
Cornelius Greither .
Mathematische Zeitschrift, 1998, 229 :107-136
[35]   Coclass of Gal(k2(2)/k) for some fields k = Q(√p1p2q,√-1) with 2-class groups of types (2,2,2) [J].
Azizi, Abdelmalek ;
Zekhnini, Abdelkader ;
Taous, Mohammed .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (02)