8-ranks of Class Groups of Some Imaginary Quadratic Number Fields

被引:0
作者
Xi Mei WU Qin YUE Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjing PRChina State Key Laboratory of Information Security Graduate School of Chinese Academy of SciencesBeijing PRChina [210016 ,100039 ]
机构
关键词
class group; Rédei matrix; reciprocity law;
D O I
暂无
中图分类号
O153.4 [域论];
学科分类号
070104 ;
摘要
<正> Let F=Q((-p1p2)1/2) be an imaginary quadratic field with distinct primes p1≡p2≡1 mod8 and the Legendre symbol ((p1)/(p2))=1.Then the 8-rank of the class group of F is equal to 2 if and onlyif the following conditions hold:(1) The quartic residue symbols ((p1)/(p2))4=((p2)/(p1))4=1;(2) Either bothp1 and p2 are represented by the form a2+32b2 over Z and p2h+(2p1)/4=x2-2p1y2 x,y ∈ Z,or bothp1 and p2 are not represented by the form a2+32b2 over Z and p2h+(2p1)/4=ε(2x2-p1y2),x,y ∈ Z,ε∈{4-1},where h+(2p1) is the narrow class number of Q((2p1)1/2).Moreover,we also generalize theseresults.
引用
收藏
页码:2061 / 2068
页数:8
相关论文
共 35 条
[21]   Exponents of class groups of real quadratic function fields (II) [J].
Chakraborty, K ;
Mukhopadhyay, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :51-54
[22]   A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower [J].
Mouhib, A. .
RAMANUJAN JOURNAL, 2016, 40 (02) :405-412
[23]   A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower [J].
A. Mouhib .
The Ramanujan Journal, 2016, 40 :405-412
[24]   Infinite Hilbert 2-class field tower of quadratic number fields [J].
Mouhib, A. .
ACTA ARITHMETICA, 2010, 145 (03) :267-272
[25]   REAL QUADRATIC NUMBER FIELDS WITH METACYCLIC HILBERT 2-CLASS FIELD TOWER [J].
Essahel, Said ;
Dakkak, Ahmed ;
Mouhib, Ali .
MATHEMATICA BOHEMICA, 2019, 144 (02) :177-190
[26]   THE STRUCTURE OF THE 2-SYLOW SUBGROUPS OF THE IDEAL CLASS GROUPS OF IMAGINARY BICYCLIC BIQUADRATIC FIELDS [J].
Parry, Charles J. ;
Ranalli, Ramona R. .
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 8 (01) :81-105
[27]   Class groups of quadratic fields of 3-rank at least 2: Effective bounds [J].
Luca, Florian ;
Pacelli, Allison M. .
JOURNAL OF NUMBER THEORY, 2008, 128 (04) :796-804
[28]   ON 2-CLASS FIELD TOWERS OF SOME COMPLEX QUARTIC NUMBER FIELDS [J].
Benjamin, Elliot ;
Snyder, C. .
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 17 (01) :57-68
[29]   Modification of Cohen-Lenstra heuristics for ideal class groups and numbers of certain real quadratic fields [J].
L.C.Washington .
Chinese Science Bulletin, 1997, (23) :1959-1962
[30]   Infinite families of class groups of quadratic fields with 3-rank at least one: quantitative bounds [J].
Lee, Siyun ;
Lee, Yoonjin ;
Yoo, Jinjoo .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (03) :621-637