Stationary patterns in a discrete bistable reaction-diffusion system:mode analysis

被引:0
|
作者
邹为 [1 ,2 ]
占萌 [1 ]
机构
[1] Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences
[2] Graduate School of the Chinese Academy of Sciences
关键词
discrete reaction–diffusion system; stationary patterns; bistable; mode analysis;
D O I
暂无
中图分类号
N93 [非线性科学];
学科分类号
摘要
This paper theoretically analyses and studies stationary patterns in diffusively coupled bistable elements. Since these stationary patterns consist of two types of stationary mode structure: kink and pulse, a mode analysis method is proposed to approximate the solutions of these localized basic modes and to analyse their stabilities. Using this method, it reconstructs the whole stationary patterns. The cellular mode structures (kink and pulse) in bistable media fundamentally differ from stationary patterns in monostable media showing spatial periodicity induced by a diffusive Turing bifurcation.
引用
收藏
页码:178 / 187
页数:10
相关论文
共 50 条
  • [1] Stationary patterns in a discrete bistable reaction-diffusion system: mode analysis
    Zou Wei
    Zhan Meng
    CHINESE PHYSICS B, 2010, 19 (10)
  • [2] Stationary structures in a discrete bistable reaction-diffusion system
    Munuzuri, AP
    Chua, LO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12): : 2807 - 2825
  • [3] Stationary patterns in bistable reaction-diffusion cellular automata
    Spale, Daniel
    Stehlik, Petr
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (06) : 6072 - 6087
  • [4] Boundary effects on the structural stability of stationary patterns in a bistable reaction-diffusion system
    Izus, GG
    de Rueda, JR
    Borzi, CH
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (1-2) : 103 - 117
  • [5] Boundary Effects on the Structural Stability of Stationary Patterns in a Bistable Reaction-Diffusion System
    G. G. Izús
    J. Reyes de Rueda
    C. H. Borzi
    Journal of Statistical Physics, 1998, 90 : 103 - 117
  • [6] GLOBAL STABILITY OF STATIONARY PATTERNS IN BISTABLE REACTION-DIFFUSION SYSTEMS
    IZUS, G
    DEZA, R
    RAMIREZ, O
    WIO, HS
    ZANETTE, DH
    BORZI, C
    PHYSICAL REVIEW E, 1995, 52 (01): : 129 - 136
  • [7] BIFURCATIONS IN A BISTABLE REACTION-DIFFUSION SYSTEM
    EBELING, W
    MALCHOW, H
    ANNALEN DER PHYSIK, 1979, 36 (02) : 121 - 134
  • [8] PROPAGATING WAVES IN DISCRETE BISTABLE REACTION-DIFFUSION SYSTEMS
    ERNEUX, T
    NICOLIS, G
    PHYSICA D-NONLINEAR PHENOMENA, 1993, 67 (1-3) : 237 - 244
  • [9] Stationary Patterns in a Two-Protein Reaction-Diffusion System
    Glock, Philipp
    Ramm, Beatrice
    Heermann, Tamara
    Kretschmer, Simon
    Schweizer, Jakob
    Muecksch, Jonas
    Alagoez, Goekberk
    Schwille, Petra
    ACS SYNTHETIC BIOLOGY, 2019, 8 (01): : 148 - 157
  • [10] PROPAGATION PHENOMENA IN A BISTABLE REACTION-DIFFUSION SYSTEM
    RINZEL, J
    TERMAN, D
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (05) : 1111 - 1137