A local version of Hardy spaces associated with operators on metric spaces

被引:0
|
作者
GONG RuMing [1 ,2 ]
LI Ji [3 ]
YAN LiXin [3 ]
机构
[1] School of Mathematics and Information Science,Guangzhou University
[2] Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes,Guangzhou University
[3] Department of Mathematics,Sun Yat-sen University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金; 中国博士后科学基金;
关键词
local Hardy space; non-negative self-adjoint operator; semigroups; local(1; p)-atoms; Moser type local boundedness condition; space of homogeneous type;
D O I
暂无
中图分类号
O177.6 [积分变换及算子演算];
学科分类号
070104 ;
摘要
Let(X,d,μ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ.Let L be a second order self-adjoint positive operator on L2(X).Assume that the semigroup e tL generated by L satisfies the Gaussian upper bounds on L 2(X).In this article we study a local version of Hardy space h1L(X) associated with L in terms of the area function characterization,and prove their atomic characters.Furthermore,we introduce a Moser type local boundedness condition for L,and then we apply this condition to show that the space h1L(X) can be characterized in terms of the Littlewood-Paley function.Finally,a broad class of applications of these results is described.
引用
收藏
页码:315 / 330
页数:16
相关论文
共 50 条
  • [1] A local version of Hardy spaces associated with operators on metric spaces
    Gong RuMing
    Li Ji
    Yan LiXin
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (02) : 315 - 330
  • [2] A local version of Hardy spaces associated with operators on metric spaces
    RuMing Gong
    Ji Li
    LiXin Yan
    Science China Mathematics, 2013, 56 : 315 - 330
  • [3] Weighted local Hardy spaces associated with operators
    Ruming Gong
    Liang Song
    Peizhu Xie
    Proceedings - Mathematical Sciences, 2018, 128
  • [4] Weighted local Hardy spaces associated with operators
    Gong, Ruming
    Song, Liang
    Xie, Peizhu
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [5] Local Hardy spaces associated with inhomogeneous higher order elliptic operators
    Cao, Jun
    Mayboroda, Svitlana
    Yang, Dachun
    ANALYSIS AND APPLICATIONS, 2017, 15 (02) : 137 - 224
  • [6] Boundedness of Singular Integral Operators on Local Hardy Spaces and Dual Spaces
    Ding, Wei
    Han, YongSheng
    Zhu, YuePing
    POTENTIAL ANALYSIS, 2021, 55 (03) : 419 - 441
  • [7] VARIABLE HARDY SPACES ASSOCIATED WITH OPERATORS SATISFYING DAVIES GAFFNEY ESTIMATES ON METRIC MEASURE SPACES OF HOMOGENEOUS TYPE
    Yang, Dachun
    Zhang, Junqiang
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 47 - 87
  • [8] Musielak–Orlicz–Hardy Spaces Associated with Operators and Their Applications
    Dachun Yang
    Sibei Yang
    Journal of Geometric Analysis, 2014, 24 : 495 - 570
  • [9] Commutators of pseudo-differential operators on local Hardy spaces
    Komori-Furuya, Y.
    ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 489 - 501
  • [10] Commutators of pseudo-differential operators on local Hardy spaces
    Yasuo Komori-Furuya
    Acta Scientiarum Mathematicarum, 2011, 77 (3-4): : 489 - 501