A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

被引:2
|
作者
Si-Yu Shao [1 ]
Wen-Jun Sun [1 ]
Ru-Qiang Yan [1 ,2 ]
Peng Wang [2 ]
Robert X Gao [2 ]
机构
[1] School of Instrument Science and Engineering, Southeast University
[2] Department of Mechanical and Aerospace Engineering, Case Western Reserve University
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Deep learning; Deep belief network; RBM; Classification;
D O I
暂无
中图分类号
TM346 [感应电机];
学科分类号
080801 ;
摘要
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper,a deep learning approach based on deep belief networks(DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine(RBM), and is trained using layer-bylayer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed,the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
引用
收藏
页码:1347 / 1356
页数:10
相关论文
共 50 条
  • [21] A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors
    Barrera-Llanga, Kevin
    Burriel-Valencia, Jordi
    Sapena-Bano, Angel
    Martinez-Roman, Javier
    SENSORS, 2023, 23 (19)
  • [22] Deep Learning-Based Domain Adaptation Method for Fault Diagnosis in Semiconductor Manufacturing
    Azamfar, Moslem
    Li, Xiang
    Lee, Jay
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2020, 33 (03) : 445 - 453
  • [23] Harnessing attention mechanisms in a comprehensive deep learning approach for induction motor fault diagnosis using raw electrical signals
    Vo, Thanh-Tung
    Liu, Meng-Kun
    Tran, Minh-Quang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 129
  • [24] Fault Diagnosis Based on Deep Learning
    Lv, Feiya
    Wen, Chenglin
    Bao, Zejing
    Liu, Meiqin
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6851 - 6856
  • [25] Deep Learning Based Approach for Bearing Fault Diagnosis
    He, Miao
    He, David
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (03) : 3057 - 3065
  • [26] Fault Diagnosis of Induction Motors Under Untrained Loads With a Feature Adaptation and Improved Broad Learning Framework
    Wong, Pak Kin
    Biao, Jiang Sai
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) : 3041 - 3052
  • [27] Computational Model for Electric Fault Diagnosis in Induction Motors
    Lopez-Cardenas, Rodrigo
    Pastor Sanchez-Fernandez, Luis
    Suarez-Guerra, Sergio
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, 2009, 61 : 453 - +
  • [28] On the application of intelligent systems for fault diagnosis in induction motors
    Da Cunha Santos, Fernanda Maria
    Da Silva, Ivan Nunes
    Suetake, Marcelo
    Controle y Automacao, 2012, 23 (05): : 553 - 569
  • [29] Fault diagnosis in induction motors fed by PWM inverters
    Villada, F
    Cadavid, D
    Muñoz, N
    Valencia, D
    Parra, D
    IEEE INTERNATIONAL SYMPOSIUM ON DIAGNOSTICS FOR ELECTRIC MACHINES, POWER ELECTRONICS AND DRIVES, PROCEEDINGS, 2003, : 229 - 234
  • [30] Research Advances in Fault Diagnosis and Prognostic based on Deep Learning
    Zhao, Guangquan
    Zhang, Guohui
    Ge, Qiangqiang
    Liu, Xiaoyong
    2016 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHENGDU), 2016,