Complete Space-like λ-surfaces in the Minkowski Space R1~3 with the Second Fundamental Form of Constant Length

被引:0
作者
Xing Xiao LI [1 ]
Yang Yang LIU [1 ]
Rui Na QIAO [1 ]
机构
[1] School of Mathematics and Information Sciences, Henan Normal University
关键词
Mean curvature; second fundamental form; space-like; λ-surfaces; classification;
D O I
暂无
中图分类号
O186.11 [古典微分几何];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the complete space-like λ-surfaces in the three dimensional Minkowski space R~3. As the result, we obtain a complete classification theorem for all the complete space-like λ-surfaces x : M~2→ R~3 with the second fundamental form of constant length. This is a natural extension to the λ-surfaces in R~3 of a recent interesting classification theorem by Cheng and Wei for λ-surfaces in the Euclidean space R~3.
引用
收藏
页码:559 / 577
页数:19
相关论文
共 25 条
[1]  
Complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow[J]. Yecheng Zhu,Yi Fang,Qing Chen.Science China(Mathematics). 2018(05)
[2]   关于完备λ超曲面的第二拼挤定理 [J].
许洪伟 ;
雷力 ;
许智源 .
中国科学:数学, 2018, 48 (01) :245-254
[3]  
Gap and rigidity theorems of $\lambda $-hypersurfaces[J] . Qiang Guang.Proceedings of the American Mathematical Society . 2018 (10)
[4]   GAP THEOREMS FOR COMPLETE λ-HYPERSURFACES [J].
Wang, Huijuan ;
Xu, Hongwei ;
Zhao, Entao .
PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (02) :453-474
[5]  
2-Dimensional complete self-shrinkers in $$\mathbf {R}^3$$[J] . Qing-Ming Cheng,Shiho Ogata.Mathematische Zeitschrift . 2016 (1-2)
[6]  
Rigidity of self-shrinkers and translating solitons of mean curvature flows[J] . Qun Chen,Hongbing Qiu.Advances in Mathematics . 2016
[7]  
Rigidity theorems of $\lambda$ -hypersurfaces[J] . Qing-Ming Cheng,Shiho Ogata,Guoxin Wei.Communications in Analysis and Geometry . 2016 (1)
[8]   A GAP THEOREM OF SELF-SHRINKERS [J].
Cheng, Qing-Ming ;
Wei, Guoxin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (07) :4895-4915
[9]   Spacelike self-similar shrinking solutions of the mean curvature flow in pseudo-Euclidean spaces [J].
Adames, Marcio Rostirolla .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2014, 22 (05) :897-929
[10]   Omori–Yau maximum principles, V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document}-harmonic maps and their geometric applications [J].
Qun Chen ;
Jürgen Jost ;
Hongbing Qiu .
Annals of Global Analysis and Geometry, 2014, 46 (3) :259-279