Polymeric artificial solid/electrolyte interphases for Li-ion batteries

被引:0
|
作者
Nae-Lih Wu [1 ]
Yu-Ting Weng [1 ]
Fu-Sheng Li [1 ]
Nai-Hsuan Yang [1 ]
Chin-Lung Kuo [2 ]
Dong-Sheng Li [2 ]
机构
[1] Deprtment of Chemical Engineering,National Taiwan University
[2] Department of Materials Science and Engineering,National Taiwan University
关键词
Li ion battery; Solid electrolyte interphase; Surface modification; Polymer blend;
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
摘要
During the operation of Li-ion batteries(LIBs),solvent and electrolyte decomposition takes place at the electrode surface to form a so-called solid-electrode interphase(SEI) passivating-layer.The physical structure and chemical composition of the SEI exert profound effects on various aspects of the electrode performance of the batteries.A new concept of forming polymeric artificial SEIs(A-SEIs) based on rational design of multifunctional polymer-blend coating to achieve favorable electrode/A-SEI/electrolyte interfacial properties is described.Three examples using binary and ternary polymer blends to form mechanically robust and highly Li-ion permeable surface coatings with selected functionalities in the cases of graphite and silicon–graphite composite electrodes have demonstrated greatly enhanced capacity,rate and cycle performance.Given the rich chemistry available from polymer blends,this surface preconditioning approach holds great promise for improving the performance of various negative electrodes to meet the requirements for advanced LIBs.
引用
收藏
页码:563 / 571
页数:9
相关论文
共 50 条
  • [41] Research on a gel polymer electrolyte for Li-ion batteries
    Li, Guangchao
    Li, Zhaohui
    Zhang, Peng
    Zhang, Hanping
    Wu, Yuping
    PURE AND APPLIED CHEMISTRY, 2008, 80 (11) : 2553 - 2563
  • [42] Effects of functional electrolyte additives for Li-ion batteries
    Shim, Eun-Gi
    Nam, Tae-Heum
    Kim, Jung-Gu
    Kim, Hyun-Soo
    Moon, Seong-In
    JOURNAL OF POWER SOURCES, 2007, 172 (02) : 901 - 907
  • [43] Modeling Li-Ion Batteries with Electrolyte Additives or Contaminants
    Delacourt, C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) : A1997 - A2004
  • [44] A review on the separators of liquid electrolyte Li-ion batteries
    Zhang, Sheng Shui
    JOURNAL OF POWER SOURCES, 2007, 164 (01) : 351 - 364
  • [45] Organic polymer gel electrolyte for Li-ion batteries
    Basumallick, I.
    Roy, Pankaj
    Chatterjee, Abhik
    Bhattacharya, Arup
    Chatterjee, Someswar
    Ghosh, Susanta
    JOURNAL OF POWER SOURCES, 2006, 162 (02) : 797 - 799
  • [46] Advanced Characterizations of Solid Electrolyte Interphases in Lithium-Ion Batteries
    Yanli Chu
    Yanbin Shen
    Feng Guo
    Xuan Zhao
    Qingyu Dong
    Qingyong Zhang
    Wei Li
    Hui Chen
    Zhaojun Luo
    Liwei Chen
    Electrochemical Energy Reviews, 2020, 3 : 187 - 219
  • [47] Advanced Characterizations of Solid Electrolyte Interphases in Lithium-Ion Batteries
    Chu, Yanli
    Shen, Yanbin
    Guo, Feng
    Zhao, Xuan
    Dong, Qingyu
    Zhang, Qingyong
    Li, Wei
    Chen, Hui
    Luo, Zhaojun
    Chen, Liwei
    ELECTROCHEMICAL ENERGY REVIEWS, 2020, 3 (01) : 187 - 219
  • [48] Voltage-Dependent First-Principles Barriers to Li Transport within Li-Ion Battery Solid Electrolyte Interphases
    Campbell, Quinn T.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (25): : 10259 - 10269
  • [49] Research progress in organic electrolyte for Li-ion batteries
    Yu, Xiao-Yuan
    Hu, Guo-Rong
    Liu, Ye-Xiang
    Dianchi/Battery, 2003, 33 (03):
  • [50] Solid-Electrolyte Interface Formation on Si Nanowires in Li-Ion Batteries: The Impact of Electrolyte Additives
    Sarra, Angelo
    Brutti, Sergio
    Palumbo, Oriele
    Capitani, Francesco
    Borondics, Ferenc
    Appetecchi, Giovanni Battista
    Carboni, Nicholas
    Ahad, Syed Abdul
    Geaney, Hugh
    Ryan, Kevin
    Paolone, Annalisa
    BATTERIES-BASEL, 2023, 9 (03):