Local Hardy spaces of Musielak-Orlicz type and their applications

被引:0
作者
YANG DaChun YANG SiBei School of Mathematical SciencesBeijing Normal UniversityLaboratory of Mathematics and Complex SystemsMinistry of EducationBeijing China [100875 ]
机构
关键词
local weight; Musielak-Orlicz function; local Hardy space; atom; local maximal function; local BMO space; dual space; pointwise multiplier; local Riesz transform; pseudo-differential operator;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Letφ:R n × [0,∞) → [0,∞) be a function such that φ(x,·) is an Orlicz function and (·,t) ∈ A ∞loc (Rn) (the class of local weights introduced by Rychkov).In this paper,the authors introduce a local Musielak-Orlicz Hardy space hφ(Rn) by the local grand maximal function,and a local BMO-type space bmoφ(Rn) which is further proved to be the dual space of hφ(Rn).As an application,the authors prove that the class of pointwise multipliers for the local BMO-type space bmo φ (Rn),characterized by Nakai and Yabuta,is just the dual of L 1 (Rn) + h Φ 0 (Rn),where φ is an increasing function on (0,∞) satisfying some additional growth conditions and Φ 0 a Musielak-Orlicz function induced by φ.Characterizations of hφ(Rn),including the atoms,the local vertical and the local nontangential maximal functions,are presented.Using the atomic characterization,the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of hφ(Rn),from which,the authors further deduce some criterions for the boundedness on hφ(Rn) of some sublinear operators.Finally,the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on hφ(Rn).
引用
收藏
页码:1676 / 1719
页数:44
相关论文
共 25 条
[1]  
Applications of Orlicz-Hardy spaces associated with operators satisfying Poisson estimates[J]. LIANG YiYu,YANG DaChun YANG SiBei School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education,Beijing 100875,China.Science China(Mathematics). 2011(11)
[2]  
Anisotropic singular integrals in product spaces[J]. BOWNIK Marcin.Science China(Mathematics). 2010(12)
[3]  
Boundedness of paraproduct operators on RD-spaces[J]. GRAFAKOS Loukas.Science China(Mathematics). 2010(08)
[4]   Orlicz-Hardy spaces associated with operators [J].
Jiang RenJin ;
Yang DaChun ;
Zhou Yuan .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05) :1042-1080
[5]  
Maximal function characterizations of Hardy spaces on RD-spaces and their applications[J]. Loukas GRAFAKOS.Science in China(Series A:Mathematics). 2008(12)
[6]   Spectral theory of some degenerate elliptic operators with local singularities [J].
Haroske, Dorothee D. ;
Skrzypczak, Leszek .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :282-299
[7]   ENDPOINT FOR THE DIV-CURL LEMMA IN HARDY SPACES [J].
Bonami, Aline ;
Feuto, Justin ;
Grellier, Sandrine .
PUBLICACIONS MATEMATIQUES, 2010, 54 (02) :341-358
[8]   Localized Hardy spaces associated with operators [J].
Jiang, Renjin ;
Yang, Dachun ;
Zhou, Yuan .
APPLICABLE ANALYSIS, 2009, 88 (09) :1409-1427
[9]   A Boundedness Criterion via Atoms for Linear Operators in Hardy Spaces [J].
Yang, Dachun ;
Zhou, Yuan .
CONSTRUCTIVE APPROXIMATION, 2009, 29 (02) :207-218
[10]   A minimum problem with free boundary in Orlicz spaces [J].
Martinez, Sandra ;
Wolanski, Noemi .
ADVANCES IN MATHEMATICS, 2008, 218 (06) :1914-1971