A new approximate proximal point algorithm for maximal monotone operator

被引:0
作者
何炳生
杨振华
廖立志
机构
[1] , Kowloon Tong, Kowloon, Hong Kong, China
[2] , Nanjing 210093, China
[3] Department of Mathematics, Nanjing University,Department of Mathematics, Nanjing University,Department of Mathematics, Hong Kong Baptist University Nanjing 210093, China
基金
中国国家自然科学基金;
关键词
proximal point algorithms; monotone operators; approximate methods;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The problem concerned in this paper is the set-valued equation 0 ∈T(z) where T is a maximal monotone operator. For given xk and βk > 0, some existing approximate proximal point algorithms take xk+1= xk such thatwhere {ηk} is a non-negative summable sequence. Instead of xk+1 = xk , the new iterate of the proposing method is given bywhere Ω is the domain of T and PΩ(·) denotes the projection on Ω. The convergence is proved under a significantly relaxed restriction supk>0 ηk<1.
引用
收藏
页码:200 / 206
页数:7
相关论文
共 50 条
  • [31] Approximate bregman proximal gradient algorithm for relatively smooth nonconvex optimization
    Takahashi, Shota
    Takeda, Akiko
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (01) : 227 - 256
  • [32] Inexact variants of the proximal point algorithm without monotonicity
    Iusem, AN
    Pennanen, T
    Svaiter, BF
    SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (04) : 1080 - 1097
  • [33] A convergence rate of the proximal point algorithm in Banach spaces
    Matsushita, Shin-ya
    OPTIMIZATION, 2018, 67 (06) : 881 - 888
  • [34] A generalized proximal point algorithm for the nonlinear complementarity problem
    Burachik, RS
    Iusem, AN
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1999, 33 (04): : 447 - 479
  • [35] Abstract strongly convergent variants of the proximal point algorithm
    Sipos, Andrei
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) : 349 - 380
  • [36] On the Strong Convergence of Halpern Type Proximal Point Algorithm
    Khatibzadeh, Hadi
    Ranjbar, Sajad
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (02) : 385 - 396
  • [37] A modified proximal point algorithm in geodesic metric space
    Garodia, Chanchal
    Uddin, Izhar
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2023, 8 (02): : 4304 - 4320
  • [38] Inexact Halpern-type proximal point algorithm
    Boikanyo, O. A.
    Morosanu, G.
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (01) : 11 - 26
  • [39] The modified proximal point algorithm in CAT(0) spaces
    Cholamjiak, Prasit
    OPTIMIZATION LETTERS, 2015, 9 (07) : 1401 - 1410
  • [40] Image restoration by using a modified proximal point algorithm
    Arunchai, Areerat
    Seangwattana, Thidaporn
    Sitthithakerngkiet, Kanokwan
    Sombut, Kamonrat
    AIMS MATHEMATICS, 2023, 8 (04): : 9557 - 9575