A new approximate proximal point algorithm for maximal monotone operator

被引:0
作者
何炳生
杨振华
廖立志
机构
[1] , Kowloon Tong, Kowloon, Hong Kong, China
[2] , Nanjing 210093, China
[3] Department of Mathematics, Nanjing University,Department of Mathematics, Nanjing University,Department of Mathematics, Hong Kong Baptist University Nanjing 210093, China
基金
中国国家自然科学基金;
关键词
proximal point algorithms; monotone operators; approximate methods;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The problem concerned in this paper is the set-valued equation 0 ∈T(z) where T is a maximal monotone operator. For given xk and βk > 0, some existing approximate proximal point algorithms take xk+1= xk such thatwhere {ηk} is a non-negative summable sequence. Instead of xk+1 = xk , the new iterate of the proposing method is given bywhere Ω is the domain of T and PΩ(·) denotes the projection on Ω. The convergence is proved under a significantly relaxed restriction supk>0 ηk<1.
引用
收藏
页码:200 / 206
页数:7
相关论文
共 50 条
  • [21] Proximal-Point Algorithm Using a Linear Proximal Term
    He, B. S.
    Fu, X. L.
    Jiang, Z. K.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (02) : 299 - 319
  • [22] A proximal method for maximal monotone operators via discretization of a first order dissipative dynamical system
    Mainge, Paul-Emile
    Moudafi, Abdellatif
    JOURNAL OF CONVEX ANALYSIS, 2007, 14 (04) : 869 - 878
  • [23] ON CONVERGENCE OF THE PROXIMAL POINT ALGORITHM IN BANACH SPACES
    Matsushita, Shin-ya
    Xu, Li
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (11) : 4087 - 4095
  • [24] A proximal point algorithm with a φ-divergence for quasiconvex programming
    Cunha, F. G. M.
    da Cruz Neto, J. X.
    Oliveira, P. R.
    OPTIMIZATION, 2010, 59 (05) : 777 - 792
  • [25] ERGODIC CONVERGENCE OF A STOCHASTIC PROXIMAL POINT ALGORITHM
    Bianchi, Pascal
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (04) : 2235 - 2260
  • [26] ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES
    Dadashi, Vahid
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (03): : 45 - 54
  • [27] Pseudomonotone operators and the Bregman Proximal Point Algorithm
    Langenberg, Nils
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (04) : 537 - 555
  • [28] The modified proximal point algorithm in Hadamard spaces
    Chang, Shih-sen
    Wang, Lin
    Wen, Ching-Feng
    Zhang, Jian Qiang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [29] BREGMAN PROXIMAL POINT ALGORITHM REVISITED: A NEW INEXACT VERSION AND ITS INERTIAL VARIANT
    Yang, L. E., I
    Toh, Kim-chuan
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (03) : 1523 - 1554
  • [30] On The Convergence Of A New Proximal Point Algorithm Of Generalized Nonexpansive Mappings In CAT(0) Spaces
    Sharma, Anupam
    APPLIED MATHEMATICS E-NOTES, 2019, 19 : 689 - 707