A new approximate proximal point algorithm for maximal monotone operator

被引:0
作者
何炳生
杨振华
廖立志
机构
[1] , Kowloon Tong, Kowloon, Hong Kong, China
[2] , Nanjing 210093, China
[3] Department of Mathematics, Nanjing University,Department of Mathematics, Nanjing University,Department of Mathematics, Hong Kong Baptist University Nanjing 210093, China
基金
中国国家自然科学基金;
关键词
proximal point algorithms; monotone operators; approximate methods;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The problem concerned in this paper is the set-valued equation 0 ∈T(z) where T is a maximal monotone operator. For given xk and βk > 0, some existing approximate proximal point algorithms take xk+1= xk such thatwhere {ηk} is a non-negative summable sequence. Instead of xk+1 = xk , the new iterate of the proposing method is given bywhere Ω is the domain of T and PΩ(·) denotes the projection on Ω. The convergence is proved under a significantly relaxed restriction supk>0 ηk<1.
引用
收藏
页码:200 / 206
页数:7
相关论文
共 50 条
  • [1] A new approximate proximal point algorithm for maximal monotone operator
    Bingsheng He
    Lizhi Liao
    Zhenhua Yang
    Science in China Series A: Mathematics, 2003, 46 : 200 - 206
  • [2] A new approximate proximal point algorithm for maximal monotone operator
    He, BS
    Liao, LZ
    Yang, ZH
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02): : 200 - 206
  • [3] Modified proximal-point algorithm for maximal monotone operators in banach spaces
    Li, L.
    Song, W.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 138 (01) : 45 - 64
  • [4] Modified Proximal-Point Algorithm for Maximal Monotone Operators in Banach Spaces
    L. Li
    W. Song
    Journal of Optimization Theory and Applications, 2008, 138 : 45 - 64
  • [5] A relaxed approximate proximal point algorithm
    Yang, ZH
    He, BS
    ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) : 119 - 125
  • [6] A Relaxed Approximate Proximal Point Algorithm
    Zhenhua Yang
    Bingsheng He
    Annals of Operations Research, 2005, 133 : 119 - 125
  • [7] ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS
    ECKSTEIN, J
    BERTSEKAS, DP
    MATHEMATICAL PROGRAMMING, 1992, 55 (03) : 293 - 318
  • [8] A new accuracy criterion for approximate proximal point algorithms
    Han, D
    He, BS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) : 343 - 354
  • [9] ROCKAFELLAR'S PROXIMAL POINT ALGORITHM FOR A FINITE FAMILY OF MONOTONE OPERATORS
    Eslamian, Mohammad
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (01): : 43 - 50
  • [10] NEW ACCURACY CRITERIA FOR MODIFIED APPROXIMATE PROXIMAL POINT ALGORITHMS IN HILBERT SPACES
    Ceng, Lu-Chuan
    Wu, Soon-Yi
    Yao, Jen-Chih
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (07): : 1691 - 1705