In order to implement cost-effective machining of gr anite materials with diamond impregnated tools, we should realize low tool w ear, low energy consumption, and high cutting efficiency, while the accuracy of the workpiece surfaces are maintained to be satisfactory. It is understood that the main factors affecting the tool wear, the energy, and the efficiency during the machining process are related to the tribological interactions that occur at the interface between the diamond tool surface and the workpiece. Based on this consideration, we propose a new machining method to machine granite materia ls to achieve improved cost effectiveness. In the proposed method, the tribologi cal interactions are maintained to a minimum. Based on the analyses of the experimental results, the following conclusions can be drawn: The wear performance is greatly dependent on the machining parameters and their combination. Therefore, optimum machining parameters must be set up at first in order to optimize the tribological characteristics of segments and thereby sawbl ade performance. These may be realized by balancing the energy expended by frict ion and the mechanical load on diamond crystal. The geometry and structure of diamond segments are another important criterion f or the diamond saw blade. Using a seven-layer structure for multi-blades sawin g and applying segments with side slots for trimming application had greatly red uced the frictions in the sawing processes. The wetting and bonding between diamonds and matrix alloys have been considered as the prerequisite for high wear performance of the segments. Diamonds coated w ith Ti-Cr alloy by a unique technique can effectively improve its wetting c apability and provide more storage space for debris, thereby reducing friction i nteractions.