Finite Groups With Given Normalizers of Sylow Subgroups

被引:0
|
作者
郭文斌
机构
[1] Yangzhou 225002
[2] Yangzhou University
[3] PRC
关键词
finite soluble group; formation;
D O I
暂无
中图分类号
O152.1 [有限群论];
学科分类号
070104 ;
摘要
A series of work was devoted to investigation of finite groups with the given properties of Sylow subgroups in the recent years.In Ref. [1] it was proved that if the normalizer of any non-unit Sylow subgroup of a finite group G is nilpotent, then
引用
收藏
页码:1952 / 1955
页数:4
相关论文
共 50 条
  • [1] FINITE-GROUPS WITH GIVEN NORMALIZERS OF SYLOW SUBGROUPS
    GUO, WB
    CHINESE SCIENCE BULLETIN, 1994, 39 (23): : 1952 - 1955
  • [2] On the nilpotent length of finite soluble groups with given normalizers of Sylow subgroups
    Guo, WB
    ALGEBRAS AND COMBINATORICS, 1999, : 247 - 254
  • [3] Finite Groups with Formation Subnormal Normalizers of Sylow Subgroups
    Vasil'ev, A. F.
    Vasil'eva, T., I
    Koranchuk, A. G.
    MATHEMATICAL NOTES, 2020, 108 (5-6) : 661 - 670
  • [4] Finite Groups with Formation Subnormal Normalizers of Sylow Subgroups
    A. F. Vasil’ev
    T. I. Vasil’eva
    A. G. Koranchuk
    Mathematical Notes, 2020, 108 : 661 - 670
  • [5] On normalizers of Sylow subgroups and p-nilpotency of finite groups
    Xu, Yong
    Li, Xianhua
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 907 - 915
  • [6] FINITE GROUPS WITH SUBNORMAL RESIDUALS OF SYLOW NORMALIZERS
    Vasil'eva, T., I
    Koranchuk, A. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (04) : 670 - 676
  • [7] Finite Groups with Subnormal Residuals of Sylow Normalizers
    T. I. Vasil’eva
    A. G. Koranchuk
    Siberian Mathematical Journal, 2022, 63 : 670 - 676
  • [8] Finite groups with some maximal subgroups of Sylow subgroups ℳ-supplemented
    Long Miao
    Mathematical Notes, 2009, 86 : 655 - 664
  • [9] Finite groups with generalized subnormal embedding of Sylow subgroups
    A. F. Vasil’ev
    T. I. Vasil’eva
    A. S. Vegera
    Siberian Mathematical Journal, 2016, 57 : 200 - 212
  • [10] Finite groups with generalized subnormal embedding of Sylow subgroups
    Vasil'ev, A. F.
    Vasil'eva, T. I.
    Vegera, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (02) : 200 - 212