Topological Entropy of a Graph Map

被引:0
作者
Tai Xiang SUN [1 ]
机构
[1] Guangxi Key Laboratory Cultivation Base of Cross-border E-commerce Intelligent Information Processing, Guangxi University of Finance and Economics
关键词
Topological entropy; periodic point; ω-limit set; recurrent point;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Let G be a graph and f : G → G be a continuous map. Denote by h(f), P(f), AP(f), R(f)and ω(x, f) the topological entropy of f, the set of periodic points of f, the set of almost periodic points of f, the set of recurrent points of f and the ω-limit set of x under f, respectively. In this paper,we show that the following statements are equivalent:(1) h(f) > 0.(2) There exists an x ∈ G such that ω(x, f) ∩ P(f) = ? and ω(x, f) is an infinite set.(3) There exists an x ∈ G such that ω(x, f)contains two minimal sets.(4) There exist x, y ∈ G such that ω(x, f)-ω(y, f) is an uncountable set and ω(y, f) ∩ω(x, f) = ?.(5) There exist an x ∈ G and a closed subset A ? ω(x, f) with f(A) ? A such that ω(x, f)-A is an uncountable set.(6) R(f)-AP(f) = ?.(7) f |P(f)is not pointwise equicontinuous.
引用
收藏
页码:194 / 208
页数:15
相关论文
共 50 条
[41]   ON THE ESTIMATION OF TOPOLOGICAL-ENTROPY [J].
NEWHOUSE, S ;
PIGNATARO, T .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (5-6) :1331-1351
[42]   On the topological entropy of families of braids [J].
Hall, Toby ;
Yurttas, S. Oeykue .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (08) :1554-1564
[43]   A Note on Topological Entropy of Maps [J].
曾凡平 .
NortheasternMathematicalJournal, 1997, (04) :477-481
[44]   Adic Attractor and Topological Entropy [J].
廖公夫 ;
刘恒 ;
王立冬 ;
邱瑞锋 .
Northeastern Mathematical Journal, 2004, (01) :1-4
[45]   Topological entropy of irregular sets [J].
Barreira, Luis ;
Li, Jinjun ;
Valls, Claudia .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (02) :853-878
[46]   Topological Entropy and Secondary Folding [J].
Tumasz, Sarah ;
Thiffeault, Jean-Luc .
JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (03) :511-524
[47]   Lower bounds for the topological entropy [J].
Gelfert, K .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (03) :555-565
[48]   TOPOLOGICAL ENTROPY AND IRREGULAR RECURRENCE [J].
Lenka Obadalov .
Analysis in Theory and Applications, 2012, 28 (04) :321-328
[49]   ON HAUSDORFF DIMENSION AND TOPOLOGICAL ENTROPY [J].
Ma, Dongkui ;
Wu, Min .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (03) :363-370
[50]   Topological entropy for local processes [J].
Oprocha, Piotr ;
Wilczynski, Pawel .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (08) :1929-1967