Topological Entropy of a Graph Map

被引:0
作者
Tai Xiang SUN [1 ]
机构
[1] Guangxi Key Laboratory Cultivation Base of Cross-border E-commerce Intelligent Information Processing, Guangxi University of Finance and Economics
关键词
Topological entropy; periodic point; ω-limit set; recurrent point;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Let G be a graph and f : G → G be a continuous map. Denote by h(f), P(f), AP(f), R(f)and ω(x, f) the topological entropy of f, the set of periodic points of f, the set of almost periodic points of f, the set of recurrent points of f and the ω-limit set of x under f, respectively. In this paper,we show that the following statements are equivalent:(1) h(f) > 0.(2) There exists an x ∈ G such that ω(x, f) ∩ P(f) = ? and ω(x, f) is an infinite set.(3) There exists an x ∈ G such that ω(x, f)contains two minimal sets.(4) There exist x, y ∈ G such that ω(x, f)-ω(y, f) is an uncountable set and ω(y, f) ∩ω(x, f) = ?.(5) There exist an x ∈ G and a closed subset A ? ω(x, f) with f(A) ? A such that ω(x, f)-A is an uncountable set.(6) R(f)-AP(f) = ?.(7) f |P(f)is not pointwise equicontinuous.
引用
收藏
页码:194 / 208
页数:15
相关论文
共 50 条
[21]   A triangular map of type 2∞ with positive topological entropy on a minimal set [J].
Balibrea, F. ;
Smital, J. ;
Stefankova, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1690-1693
[22]   Adjoint entropy vs topological entropy [J].
Giordano Bruno, Anna .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (09) :2404-2419
[23]   Topological entropy bounds multiscale entropy [J].
Canovas, Jose S. .
TOPOLOGY AND ITS APPLICATIONS, 2023, 338
[24]   Topological R-entropy and topological entropy of free semigroup actions [J].
Zhu, Li ;
Ma, Dongkui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (02) :1056-1069
[25]   RELATIVELY POINTWISE RECURRENT GRAPH MAP [J].
Hawete, Hattab .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) :2087-2092
[26]   On the topological directional entropy [J].
Akin, Hasan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (02) :459-466
[27]   Calculating Topological Entropy [J].
Stewart L. Baldwin ;
Edward E. Slaminka .
Journal of Statistical Physics, 1997, 89 :1017-1033
[28]   Topological permutation entropy [J].
Amigo, Jose M. ;
Kennel, Matthew B. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 231 (02) :137-142
[29]   Calculating topological entropy [J].
Baldwin, SL ;
Slaminka, EE .
JOURNAL OF STATISTICAL PHYSICS, 1997, 89 (5-6) :1017-1033
[30]   A NOTE ON TOPOLOGICAL ENTROPY [J].
熊金城 .
Chinese Science Bulletin, 1989, (20) :1673-1676