Effect of temperature on the effective thermal conductivity of n-tetradecane-based nanofluids containing copper nanoparticles

被引:2
作者
Haifeng Jiang
Qianghui Xu
Chao Huang
Lin Shi
机构
[1] KeyLaboratoryforThermalScienceandPowerEngineeringofMinistryofEducation,DepartmentofThermalEngineeringTsinghuaUniversity
关键词
Nanofluid; Thermal conductivity; High temperature; Brownian motion;
D O I
暂无
中图分类号
TB383.1 [];
学科分类号
070205 ; 080501 ; 1406 ;
摘要
Nanofluids were prepared by dispersing Cu nanoparticles(20nm) in n-tetradecane by a two-step method.The effective thermal conductivity was measured for various nanoparticle volume fractions(0.0001-0.02) and temperatures(306.22-452.66 K).The experimental data compares well with the Jang and Choi model.The thermal conductivity enhancement was lower above 391.06 K than for that between306.22 and 360.77 K.The interfacial thermal resistance increased with increasing temperature.The effective thermal conductivity enhancement was greater than that obtained with a more viscous fluid as the base media at 452.66 K because of nanoconvection induced by nanoparticle Brownian motion at high temperature.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 19 条
[1]  
Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid[J]. Wei Yu,Huaqing Xie,Yang Li,Lifei Chen School of Urban Development and Environmental Engineering,Shanghai Second Polytechnic University,Shanghai 201209,China.Particuology. 2011(02)
[2]  
Review of nanofluids for heat transfer applications[J]. Saeid Vafaei.Particuology. 2009(02)
[3]  
Effective thermal conductivity of nanofluids considering interfacial nano-shells[J] . Haifeng Jiang,Hui Li,Qianghui Xu,Lin Shi.Materials Chemistry and Physics . 2014 (1-2)
[4]   Experimental Investigation of Parameters Affecting Nanofluid Effective Thermal Conductivity [J].
Kazemi-Beydokhti, A. ;
Heris, S. Zeinali ;
Moghadam, N. ;
Shariati-Niasar, M. ;
Hamidi, A. A. .
CHEMICAL ENGINEERING COMMUNICATIONS, 2014, 201 (05) :593-611
[5]  
A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness[J] . C.Y. Tso,S.C. Fu,Christopher Y.H. Chao.International Journal of Heat and Mass Transfer . 2014
[6]   Thermal conductivity and specific heat capacity measurements of CuO nanofluids [J].
Barbes, Benigno ;
Paramo, Ricardo ;
Blanco, Eduardo ;
Casanova, Carlos .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 115 (02) :1883-1891
[7]  
Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid[J] . Haifeng Jiang,Hui Li,Cheng Zan,Fuqiang Wang,Qianpeng Yang,Lin Shi.Thermochimica Acta . 2014
[8]   A Thermal Conductivity Model for Nanofluids Heat Transfer Enhancement [J].
Azari, A. ;
Kalbasi, M. ;
Moazzeni, A. ;
Rahman, A. .
PETROLEUM SCIENCE AND TECHNOLOGY, 2014, 32 (01) :91-99
[9]  
Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials[J] . Yutang Fang,Huimin Yu,Weijun Wan,Xuenong Gao,Zhengguo Zhang.Energy Conversion and Management . 2013
[10]  
Thermal properties and rheological behavior of water based Al 2 O 3 nanofluid as a heat transfer fluid[J] . M. Ghanbarpour,E. Bitaraf Haghigi,R. Khodabandeh.Experimental Thermal and Fluid Science . 2013