Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis

被引:6
|
作者
Yao Wang [1 ]
Dingsheng Wang [1 ]
Yadong Li [1 ]
机构
[1] Department of Chemistry, Tsinghua University
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
O643.36 [催化剂]; TM911.4 [燃料电池];
学科分类号
摘要
Single-atom site catalysts(SACs) have made great achievements due to their nearly 100% atomic utilization and uniform active sites. Regulating the surrounding environment of active sites, including electron structure and coordination environment via atom-level interface regulation, to design and construct an advanced SACs is of great significance for boosting electrocatalytic reactions. In this review, we systemically summarized the fundamental understandings and intrinsic mechanisms of SACs for electrocatalytic applications based on the interface site regulations. We elaborated the several different regulation strategies of SACs to demonstrate their ascendancy in electrocatalytic applications. Firstly, the interfacial electronic interaction was presented to reveal the electron transfer behavior of active sites. Secondly, the different coordination structures of metal active center coordinated with two or three non-metal elements were also summarized. In addition, other atom-level interfaces of SACs, including metal atom–atom interface, metal atom-X-atom interface(X: non-metal element), metal atom-particle interface,were highlighted and the corresponding promoting effect towards electrocatalysis was disclosed.Finally, we outlooked the limitations, perspectives and challenges of SACs based on atomic interface regulation.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [41] Single-Atom Catalysts in Catalytic Biomedicine
    Xiang, Huijing
    Feng, Wei
    Chen, Yu
    ADVANCED MATERIALS, 2020, 32 (08)
  • [42] Structural evolution of single-atom catalysts
    Zhang, Leilei
    Yang, Ji
    Yang, Xiaofeng
    Wang, Aiqin
    Zhang, Tao
    CHEM CATALYSIS, 2023, 3 (03):
  • [43] Nanomotors driven by single-atom catalysts
    Chen, Shuai
    Wang, Jianhong
    Cao, Shoupeng
    Al-Hilfi, Samir H.
    Yang, Juan
    Bonn, Mischa
    van Hest, Jan C. M.
    Shao, Jingxin
    Mullen, Klaus
    Zhou, Yazhou
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (04):
  • [44] Single-atom catalysts for hydroformylation of olefins
    Tao, Shu
    Yang, Da
    Wang, Minmin
    Sun, Guangxun
    Xiong, Gaoyan
    Gao, Wenwen
    Zhang, Youzhi
    Pan, Yuan
    ISCIENCE, 2023, 26 (03)
  • [45] Theoretical insights into single-atom catalysts
    McCardle, Kaitlin
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (03): : 138 - 138
  • [46] Single-atom Automobile Exhaust Catalysts
    Lu, Yubing
    Zhang, Zihao
    Lin, Fan
    Wang, Huamin
    Wang, Yong
    CHEMNANOMAT, 2020, 6 (12) : 1659 - 1682
  • [47] Magnesium single-atom catalysts with superbasicity
    Xiang-Bin Shao
    Yao Nian
    Song-Song Peng
    Guo-Song Zhang
    Meng-Xuan Gu
    You Han
    Xiao-Qin Liu
    Lin-Bing Sun
    Science China(Chemistry), 2023, (06) : 1737 - 1743
  • [48] Single-Atom Catalysts for Photocatalytic Reactions
    Wang, Qiushi
    Zhang, Dafeng
    Chen, Yong
    Fu, Wen-Fu
    Lv, Xiao-Jun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (07) : 6430 - 6443
  • [49] Single-Atom Catalysts Boosted Electrochemiluminescence
    Wang, Dan-Ling
    Zhao, Wei
    CHEMPLUSCHEM, 2025,
  • [50] Magnesium single-atom catalysts with superbasicity
    XiangBin Shao
    Yao Nian
    SongSong Peng
    GuoSong Zhang
    MengXuan Gu
    You Han
    XiaoQin Liu
    LinBing Sun
    Science China(Chemistry), 2023, 66 (06) : 1737 - 1743