RENORMALIZED SOLUTIONS OF ELLIPTIC EQUATIONS WITH ROBIN BOUNDARY CONDITIONS

被引:0
作者
Olivier GUIB [1 ]
Alip OROPEZA [1 ,2 ]
机构
[1] Laboratoire de Mathématiques Raphaёl Salem, CNRS, UMR 6085, Université de Rouen,Avenue de l'Université
[2] University of the Philippines Diliman, Institute of Mathematics
关键词
elliptic equations; renormalized solution; uniqueness; Robin boundary conditions; L~1 data;
D O I
暂无
中图分类号
O175.25 [椭圆型方程];
学科分类号
070104 ;
摘要
In the present paper, we consider elliptic equations with nonlinear and nonhomogeneous Robin boundary conditions of the type{-div(B(x, u)▽u) = f in ?,u = 0 on Γ;,B(x, u)▽u·n→+γ(x)h(u) =g on Γ;,where f and g are the element of L;(?) and L;(Γ;), respectively. We define a notion of renormalized solution and we prove the existence of a solution. Under additional assumptions on the matrix field B we show that the renormalized solution is unique.
引用
收藏
页码:889 / 910
页数:22
相关论文
共 6 条
  • [1] Homogenization of a quasilinear elliptic problem with nonlinear Robin boundary conditions
    Cabarrubias, Bituin
    Donato, Patrizia
    [J]. APPLICABLE ANALYSIS, 2012, 91 (06) : 1111 - 1127
  • [2] Quasi-linear degenerate elliptic problems with L 1 data[J] . Nonlinear Analysis . 2004 (3)
  • [3] Uniqueness of solutions for some nonlinear Dirichlet problems[J] . Alessio Porretta. Nonlinear Differential Equations and Applications NoDEA . 2004 (4)
  • [4] Existence and uniqueness for a degenerate parabolic equation with L1-data
    Andreu, F
    Mazón, JM
    De León, SS
    Toledo, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) : 285 - 306
  • [5] Approximated solutions of equations with L 1 data. Application to the H -convergence of quasi-linear parabolic equations[J] . Andrea Dall’Aglio. Annali di Matematica Pura ed Applicata . 1996 (1)
  • [6] On some nonlinear elliptic equations involving derivatives of the nonlinearity[J] . J. Carrillo,M. Chipot. Proceedings of the Royal Society of Edinburgh: Se . 1985 (3-4)