On 3-Regular Tripartitions

被引:0
|
作者
ChANDrashekar ADIGA [1 ]
Ranganatha DASAPPA [2 ,1 ]
机构
[1] Department of Studies in Mathematics, University of Mysore
[2] Department of Mathematics, School of Physical Sciences, Central University of Karnataka
关键词
Regular partitions; congruences; theta functions;
D O I
暂无
中图分类号
O156.4 [解析数论];
学科分类号
070104 ;
摘要
Abstract In this article,we investigate the arithmetic behavior of the function D;(n)which counts the number of 3-regular tripartitions of n.For example,we show that forα≥1 and n≥0,■and ■
引用
收藏
页码:355 / 368
页数:14
相关论文
共 50 条
  • [1] On 3-Regular Tripartitions
    Chandrashekar Adiga
    Ranganatha Dasappa
    Acta Mathematica Sinica, English Series, 2019, 35 : 355 - 368
  • [2] On 3-Regular Tripartitions
    Adiga, Chandrashekar
    Dasappa, Ranganatha
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (03) : 355 - 368
  • [3] Almost 3-regular overpartitions
    Ballantine, Cristina
    Merca, Mircea
    RAMANUJAN JOURNAL, 2022, 58 (03) : 957 - 971
  • [4] On 3-Regular Partitions in 3-Colors
    D. S. Gireesh
    M. S. Mahadeva Naika
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 137 - 148
  • [5] Congruences modulo 4 for the number of 3-regular partitions
    Ballantine, Cristina
    Merca, Mircea
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1577 - 1583
  • [6] On 3-Regular Partitions in 3-Colors
    Gireesh, D. S.
    Naika, M. S. Mahadeva
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (01) : 137 - 148
  • [7] New parity results for 3-regular partitions
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2023, 46 (03) : 465 - 471
  • [8] EQUALITIES FOR THE r3-CRANK OF 3-REGULAR OVERPARTITIONS
    Hao, Robert X. J.
    Shen, Erin Y. Y.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2023, 60 (2-3) : 123 - 132
  • [9] Arithmetic properties of 3-regular 6-tuple partitions
    Murugan, P.
    Fathima, S. N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04) : 1249 - 1261
  • [10] Arithmetic properties of 3-regular partitions with distinct odd parts
    V. S. Veena
    S. N. Fathima
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 69 - 80