By the Cramér method, the large deviation principle for a form of compound Poisson process S(t)=∑N(t)i=1h(t-Si)Xi is obtained,where N(t), t>0, is a nonhomogeneous Poisson process with intensity λ(t)>0, Xi, i≥1, are i.i.d. nonnegative random variables independent of N(t), and h(t), t>0, is a nonnegative monotone real function. Consequently, weak convergence for S(t) is also obtained.