Incomplete multi-view clustering via local and global co-regularization

被引:1
|
作者
Jiye LIANG [1 ]
Xiaolin LIU [1 ]
Liang BAI [1 ]
Fuyuan CAO [1 ]
Dianhui WANG [2 ,3 ]
机构
[1] Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education,School of Computer and Information Technology, Shanxi University
[2] Artificial Intelligence Research Institute, China University of Mining and Technology
[3] Department of Computer Science and Computer Engineering, La Trobe University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
The incompleteness of multi-view data is a phenomenon associated with real-world data mining applications, which brings a huge challenge for multi-view clustering. Although various types of clustering methods, which try to obtain a complete and consensus clustering result from a latent subspace, have been developed to overcome this problem, most methods excessively rely on views-public instances to bridge the connection with view-private instances. When lacking sufficient views-public instances, existing methods fail to transmit the information among incomplete views effectively. To overcome this limitation, we propose an incomplete multi-view clustering algorithm via local and global co-regularization(IMVC-LG). In this algorithm, we define a new objective function that is composed of two terms: local clustering from each view and global clustering from multiple views, which constrain each other to exploit the local clustering information from different incomplete views and determine a global consensus clustering result, respectively.Furthermore, an iterative optimization method is proposed to minimize the objective function. Finally, we compare the proposed algorithm with other state-of-the-art incomplete multi-view clustering methods on several benchmark datasets to illustrate its effectiveness.
引用
收藏
页码:96 / 111
页数:16
相关论文
共 50 条
  • [41] Robust Multi-View Clustering With Incomplete Information
    Yang, Mouxing
    Li, Yunfan
    Hu, Peng
    Bai, Jinfeng
    Lv, Jiancheng
    Peng, Xi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) : 1055 - 1069
  • [42] Multi-View Spectral Clustering With Incomplete Graphs
    Zhuge, Wenzhang
    Luo, Tingjin
    Tao, Hong
    Hou, Chenping
    Yi, Dongyun
    IEEE ACCESS, 2020, 8 : 99820 - 99831
  • [43] Localized Sparse Incomplete Multi-View Clustering
    Liu, Chengliang
    Wu, Zhihao
    Wen, Jie
    Xu, Yong
    Huang, Chao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5539 - 5551
  • [44] Online Binary Incomplete Multi-view Clustering
    Yang, Longqi
    Zhang, Liangliang
    Tang, Yuhua
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 75 - 90
  • [45] Online Multi-view Clustering with Incomplete Views
    Shao, Weixiang
    He, Lifang
    Lu, Chun-ta
    Yu, Philip S.
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 1012 - 1017
  • [46] Efficient and Effective Incomplete Multi-View Clustering
    Liu, Xinwang
    Zhu, Xinzhong
    Li, Miaomiao
    Tang, Chang
    Zhu, En
    Yin, Jianping
    Gao, Wen
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4392 - 4399
  • [47] Dynamic Incomplete Multi-view Imputing and Clustering
    Li, Xingfeng
    Sun, Quansen
    Ren, Zhenwen
    Sun, Yinghui
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3412 - 3420
  • [48] Incomplete multi-view clustering based on hypergraph
    Chen, Jin
    Xu, Huafu
    Xue, Jingjing
    Gao, Quanxue
    Deng, Cheng
    Lv, Ziyu
    INFORMATION FUSION, 2025, 117
  • [49] Incomplete multi-view clustering via structure exploration and missing-view inference
    Wang, Ziyu
    Li, Lusi
    Ning, Xin
    Tan, Wenkai
    Liu, Yongxin
    Song, Houbing
    INFORMATION FUSION, 2024, 103
  • [50] Multi-view clustering via spectral partitioning and local refinement
    Chikhi, Nacim Fateh
    INFORMATION PROCESSING & MANAGEMENT, 2016, 52 (04) : 618 - 627