A Variation of a Conjecture Due to Erds and Sós

被引:0
|
作者
Jian Hua YINDepartment of Mathematics
机构
基金
中国国家自然科学基金;
关键词
graph; degree sequence; Erdos-Sos conjecture;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Erdos and Sos conjectured in 1963 that every graph G on n vertices with edge numbere(G) > 1/2(k - 1)n contains every tree T with k edges as a subgraph.In this paper,we consider avariation of the above conjecture,that is,for n > 9/2k~2 + 37/2k + 14 and every graph G on n vertices withe(G) > 1/2 (k-1)n,we prove that there exists a graph G’ on n vertices having the same degree sequenceas G and containing every tree T with k edges as a subgraph.
引用
收藏
页码:795 / 802
页数:8
相关论文
共 50 条
  • [1] A variation of a conjecture due to Erdös and Sós
    Jian Hua Yin
    Jiong Sheng Li
    Acta Mathematica Sinica, English Series, 2009, 25 : 795 - 802
  • [2] A variation of a conjecture due to Erdos and SA3s
    Yin, Jian Hua
    Li, Jiong Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (05) : 795 - 802
  • [3] The Threshold for the Erdős, Jacobson and Lehel Conjecture to Be True
    Jiong Sheng Li
    Jian Hua Yin
    Acta Mathematica Sinica, 2006, 22 : 1133 - 1138
  • [4] Towards the Erdős-Gallai cycle decomposition conjecture
    Bucic, Matija
    Montgomery, Richard
    ADVANCES IN MATHEMATICS, 2024, 437
  • [5] The Erdös-Jacobson-Lehel conjecture on potentiallyPk-graphic sequence is true
    Jiongsheng Li
    Zixia Song
    Rong Luo
    Science in China Series A: Mathematics, 1998, 41 : 510 - 520
  • [6] On a problem of Erdős and Rado
    Jean A. Larson
    William J. Mitchell
    Annals of Combinatorics, 1997, 1 (1) : 245 - 252
  • [7] The Erds-Jacobson-Lehel conjecture on potentially Pk-graphic sequence is true
    李炯生
    宋梓霞
    罗荣
    Science China Mathematics, 1998, (05) : 510 - 520
  • [8] Erdős–Kakutani phenomena for paths
    S. Todorcevic
    Acta Mathematica Hungarica, 2021, 163 : 168 - 173
  • [9] Local Hadwiger's Conjecture
    Moore, Benjamin
    Postle, Luke
    Turner, Lise
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 162 : 154 - 183
  • [10] Hadwiger's Conjecture is Decidable
    Kawarabayashi, Ken-ichi
    Reed, Bruce
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 445 - 454