On the Monotonicity of the Speed of Random Walks on a Percolation Cluster of Trees

被引:0
|
作者
Da Yue CHEN Fu Xi ZHANG LMAM
机构
关键词
random walk; percolation; speed; monotonicity; tree;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors consider the simple random walk on the infinite cluster of the Bernoulli bondpercolation of trees,and investigate the relation between the speed of the simple random walk andthe retaining probability p by studying three classes of trees.A sufficient condition is established forGalton-Watson trees.
引用
收藏
页码:1949 / 1954
页数:6
相关论文
共 50 条
  • [21] The Best Mixing Time for Random Walks on Trees
    Beveridge, Andrew
    Youngblood, Jeanmarie
    GRAPHS AND COMBINATORICS, 2016, 32 (06) : 2211 - 2239
  • [22] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [23] Random walks on Galton-Watson trees with random conductances
    Gantert, Nina
    Mueller, Sebastian
    Popov, Serguei
    Vachkovskaia, Marina
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1652 - 1671
  • [24] The Poisson boundary of lamplighter random walks on trees
    Karlsson, Anders
    Woess, Wolfgang
    GEOMETRIAE DEDICATA, 2007, 124 (01) : 95 - 107
  • [25] RANDOM WALKS ON INFINITE TREES
    Anandam, Victor
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 65 (01): : 75 - 82
  • [26] Percolation on random recursive trees
    Baur, Erich
    RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (04) : 655 - 680
  • [27] Transience and Recurrence of Random Walks on Percolation Clusters in an Ultrametric Space
    Dawson, D. A.
    Gorostiza, L. G.
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 494 - 526
  • [28] Transience and Recurrence of Random Walks on Percolation Clusters in an Ultrametric Space
    D. A. Dawson
    L. G. Gorostiza
    Journal of Theoretical Probability, 2018, 31 : 494 - 526
  • [29] Random walks on trees with finitely many cone types
    Nagnibeda, T
    Woess, W
    JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (02) : 383 - 422
  • [30] Random Walks on Trees with Finitely Many Cone Types
    Tatiana Nagnibeda
    Wolfgang Woess
    Journal of Theoretical Probability, 2002, 15 : 383 - 422