MODIFIED ROPER-SUFFRIDGE OPERATOR FOR SOME SUBCLASSES OF STARLIKE MAPPINGS ON REINHARDT DOMAINS

被引:0
作者
王建飞
机构
[1] DepartmentofMathematicsandPhysics,InformationEngineering,ZhejiangNormalUniversity
关键词
biholomorphic mappings; Roper-Sufridge extension operator; Reinhardt domains; Starlike mappings; homogeneous polynomial of degree m;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In this note,the author introduces some new subclasses of starlike mappings SΩn,p2,…,pn(β,A,B)={f ∈H(Ω):|itan β +(1-itan β)2/ρ(z)ρ/z(z)Jf-1(z)f(z)-1-AB/1-B2|<B-A/1-B2},on Reinhardt domains Ωn,p2,…,pn={z ∈Cn:|z1|2+∑n j=2 |zj|pj<1},where -1 ≤ A<B<1,q=min{p2,···,pn }≥1,l=max{p2,···,pn }≥2 and β∈(-π/2,π/2).Some diferent conditions for P are established such that these classes are preserved under the following modified Roper-Sufridge operator F(z)=(f(z1)+f′(z1)Pm(z0),(f′(z1))1/mz0)′,where f is a normalized biholomorphic function on the unit disc D,z=(z1,z0) ∈Ωn,p2,…,pn,z0=(z2,···,zn) ∈Cn-1.Another condition for P is also obtained such that the above generalized Roper-Sufridge operator preserves an almost spirallike function of type β and order α.These results generalize the modified Roper-Sufridge extension oper- ator from the unit ball to Reinhardt domains.Notice that when p2=p3=···=pn=2,our results reduce to the recent results of Feng and Yu.
引用
收藏
页码:1627 / 1638
页数:12
相关论文
共 11 条
[1]  
The Generalized Roper-Suffridge Extension Operator.[J].Feng Shuxia;Liu Taishun.Acta Mathematica Scientia.2008, 1
[2]  
A class of Loewner chain preserving extension operators.[J].Jerry R. Muir.Journal of Mathematical Analysis and Applications.2007, 2
[3]   A Modification of the Roper-Suffridge Extension Operator [J].
Jerry R. Muir .
Computational Methods and Function Theory, 2005, 5 (1) :237-251
[4]  
Extreme points for convex mappings of<Emphasis Type="Italic">B</Emphasis> <Subscript> <Emphasis Type="Italic">n</Emphasis> </Subscript>.[J].Jerry R. Muir;Ted J. Suffridge.Journal d’Analyse Mathématique.2006, 1
[5]   On decomposition theorem of normalized biholomorphic convex mappings in Reinhardt domains [J].
Zhang, WJ ;
Liu, TS .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (01) :94-106
[6]  
Univalent mappings associated with the Roper-Suffridge extension operator.[J].Ian Graham;Gabriela Kohr.Journal d’Analyse Mathématique.2000, 1
[7]  
Convex mappings on the unit ball of C n.[J].Kevin A. Roper;Ted J. Suffridge.Journal d’Analyse Mathematique.1995, 1
[8]   全纯映射子族上改进的Roper-Suffridge算子 [J].
王建飞 ;
刘太顺 .
数学年刊A辑(中文版), 2010, 31 (04) :487-496
[9]   关于α次的β型螺形映射推广的Roper-Suffridge算子的一个注记(英文) [J].
刘小松 ;
冯淑霞 .
数学季刊, 2009, 24 (02) :310-316
[10]   复Banach空间单位球上几类映射的增长掩盖定理 [J].
冯淑霞 ;
刘太顺 ;
任广斌 .
数学年刊A辑(中文版), 2007, (02) :215-230