Finite p-Groups in Which the Number of Subgroups of Possible Order Is Less Than or Equal to p~3

被引:0
作者
Haipeng QU
机构
基金
中国国家自然科学基金;
关键词
Inner abelian p-groups; Metacyclic p-groups; Groups of order pn with a cyclic subgroup of index p2; The number of subgroups;
D O I
暂无
中图分类号
O152.1 [有限群论];
学科分类号
070104 ;
摘要
In this paper, groups of order pn in which the number of subgroups of possible order is less than or equal to p3 are classified. It turns out that if p > 2, n ≥ 5, then the classification of groups of order pn in which the number of subgroups of possible order is less than or equal to p3 and the classification of groups of order pn with a cyclic subgroup of index p2 are the same.
引用
收藏
页码:497 / 506
页数:10
相关论文
共 13 条
  • [1] On Hua-Tuan's conjecture
    Zhang QinHai
    Qu HaiPeng
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (02): : 389 - 393
  • [2] Taussky,O.Remark on the class field tower. Journal of the London Mathematical Society . 1937
  • [3] 内交换p-群的中心扩张(Ⅰ)
    李立莉
    曲海鹏
    陈贵云
    [J]. 数学学报, 2010, 53 (04) : 675 - 684
  • [4] W. Burnside.Theory of Groups of Finite Order. . 1897
  • [5] A. Kulakoff.  über die Anzahl der eigentlichen Untergruppen und der Elemente von gegebener Ordnung in p -Gruppen[J]. Mathematische Annalen . 1931 (1)
  • [6] L. Rédei.  Das “schiefe Produkt” in der Gruppentheorie[J]. Commentarii Mathematici Helvetici . 1947 (1)
  • [7] Berkovich,Y. G.On the number of subgroups of given order in a finitep-group of exponentp. Proceedings of the American Mathematical Society . 1990
  • [8] L.K.Hua,H.F.Tuan.Determination of the groups of odd-prime-power p~n which contain a cyclic subgroup of index p~2. Sci Rep.Nat.Tsing-Hua Univ.Ser.A . 1940
  • [9] Berkovich,Y.Groups of Prime Power Order I. . 2008
  • [10] Xu M.Some problems on finite p groups. Adv Math (Beijing) . 1985