GENERAL DECAY FOR A VISCOELASTIC EQUATION OF VARIABLE COEFFICIENTS WITH A TIME-VARYING DELAY IN THE BOUNDARY FEEDBACK AND ACOUSTIC BOUNDARY CONDITIONS

被引:0
作者
Yamna BOUKHATEM [1 ]
Benyattou BENABDERRAHMANE [2 ]
机构
[1] Laboratory of Pure and Applied Mathematics, University of Laghouat
[2] Laboratory of Pure and Applied Mathematics, Mohamed Boudiaf University
关键词
acoustic boundary conditions; general decay; time-varying delay; variable coefficients; viscoelastic equation;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay results of the energy are established via suitable Lyapunov functionals and some properties of the convex functions. Our result is obtained without imposing any restrictive growth assumption on the damping term and the elements of the matrix A and the kernel function g.
引用
收藏
页码:1453 / 1471
页数:19
相关论文
共 17 条
[1]   Polynomial Decay and Blow Up of Solutions for Variable Coefficients Viscoelastic Wave Equation with Acoustic Boundary Conditions [J].
Yamna BOUKHATEM ;
Benyattou BENABDERRAHMANE .
Acta Mathematica Sinica, 2016, 32 (02) :153-174
[2]  
Nonlinear boundary stabilization of the wave equations with variable coefficients and time dependent delay[J] . Zhen-Hu Ning,Chang-Xiang Shen,Xiaopeng Zhao,Hao Li,Changsong Lin,Yanmei Zhang.Applied Mathematics and Computation . 2014
[3]  
Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions[J] . Yamna Boukhatem,Benyattou Benabderrahmane.Nonlinear Analysis . 2014
[4]   Stabilization of the wave equation with variable coefficients and a delay in dissipative internal feedback [J].
Ning, Zhen-Hu ;
Shen, Chang-Xiang ;
Zhao, Xiaopeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) :148-155
[5]   Well-posedness for a variable-coefficient wave equation with nonlinear damped acoustic boundary conditions [J].
Wu, Jieqiong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) :6562-6569
[6]  
Decay rate estimates for wave equations of memory type with acoustic boundary conditions[J] . Jong Yeoul Park,Sun Hye Park.Nonlinear Analysis . 2010 (3)
[7]  
On the control of solutions of viscoelastic equations with boundary feedback[J] . Salim A. Messaoudi,Muhammad Islam Mustafa.Nonlinear Analysis: Real World Applications . 2008 (5)
[8]  
Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction[J] . Marcelo M. Cavalcanti,Valéria N. Domingos Cavalcanti,Irena Lasiecka.Journal of Differential Equations . 2007 (2)
[9]  
Abstract wave equations with acoustic boundary conditions[J] . DelioMugnolo.Math. Nachr. . 2005 (3)
[10]  
Exponential Decay Rates for Structural Acoustic Model with an Overdamping on the Interface and Boundary Layer Dissipation[J] . Francesca Bucci,Irena Lasiecka.Applicable Analysis . 2002 (4)