Lattice Boltzmann simulation of liquid vapor system by incorporating a surface tension term

被引:0
作者
宋保维 [1 ]
任峰 [1 ]
胡海豹 [1 ]
黄桥高 [1 ]
机构
[1] School of Marine Science and Technology, Northwestern Polytechnical University
基金
高等学校博士学科点专项科研基金;
关键词
lattice Boltzmann method; surface tension; pseudopotential model; numerical stability;
D O I
暂无
中图分类号
O552.421 [];
学科分类号
0702 ;
摘要
In this study,we investigate the pseudopotential multiphase model of lattice Boltzmann method(LBM)and incorporate a surface tension term to implement the particle interaction force.By using the Carnahan–Starling(CS)equation of state(EOS)with a proper critical pressure–density ratio,a density ratio over 160000 is obtained with satisfactory numerical stability.The added surface tension term offers a flexible choice to adjust the surface tension strength.Numerical tests of the Laplace rule are conducted,proving that smaller spurious velocity and better numerical stability can be acquired as the surface tension becomes stronger.Moreover,by wall adhesion and heterogeneous cavitation tests,the surface tension term shows its practical application in dealing with problems in which the surface tension plays an important role.
引用
收藏
页码:381 / 385
页数:5
相关论文
共 8 条
  • [1] 用格子Boltzmann方法数值模拟三维空化现象
    张新明
    周超英
    Islam Shams
    刘家琦
    [J]. 物理学报, 2009, 58 (12) : 8406 - 8414
  • [2] Phase-field modeling droplet dynamics with soluble surfactants
    Liu, Haihu
    Zhang, Yonghao
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (24) : 9166 - 9187
  • [3] A modified pseudopotential for a lattice Boltzmann simulation of bubbly flow
    Liu, Malin
    Yu, Zhao
    Wang, Tiefeng
    Wang, Jinfu
    Fan, Liang-Shih
    [J]. CHEMICAL ENGINEERING SCIENCE, 2010, 65 (20) : 5615 - 5623
  • [4] On equations of state in a lattice Boltzmann method
    Kupershtokh, A. L.
    Medvedev, D. A.
    Karpov, D. I.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (05) : 965 - 974
  • [5] Mesoscopic modelling of local phase transitions and apparent-slip phenomena in microflows[J] . R. Benzi,L. Biferale,M. Sbragaglia,S. Succi,F. Toschi. Mathematics and Computers in Simulation . 2006 (2)
  • [6] A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh–Taylor Instability[J] . Xiaoyi He,Shiyi Chen,Raoyang Zhang. Journal of Computational Physics . 1999 (2)
  • [7] The Area method for pure fluids and an analysis of the two-phase region[J] . A.E Elhassan,R.J.B Craven,K.M de Reuck. Fluid Phase Equilibria . 1997 (1)
  • [8] Multicomponent lattice-Boltzmann model with interparticle interaction[J] . Xiaowen Shan,Gary Doolen. Journal of Statistical Physics . 1995 (1)