NUAT T-splines of odd bi-degree and local refinement

被引:0
作者
DUAN Xiao-juan [1 ]
WANG Guo-zhao [1 ]
机构
[1] Department of Mathematics, Zhejiang University
基金
中国国家自然科学基金;
关键词
odd bi-degree; non-uniform algebraic-trigonometric T-spline; local refinement; blending function; linear independence;
D O I
暂无
中图分类号
O186.11 [古典微分几何];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a new kind of spline surfaces, named non-uniform algebraictrigonometric T-spline surfaces(NUAT T-splines for short) of odd bi-degree. The NUAT Tspline surfaces are defined by applying the T-spline framework to the non-uniform algebraictrigonometric B-spline surfaces(NUAT B-spline surfaces). Based on the knot insertion algorithm of the NUAT B-splines, a local refinement algorithm for the NUAT T-splines is given. This algorithm guarantees that the resulting control grid is a T-mesh as the original one. Finally,we prove that, for any NUAT T-spline of odd bi-degree, the linear independence of its blending functions can be determined by computing the rank of the NUAT T-spline-to-NUAT B-spline transformation matrix.
引用
收藏
页码:410 / 421
页数:12
相关论文
共 11 条
[1]   Two kinds of B-basis of the algebraic hyperbolic space [J].
李亚娟 ;
汪国昭 .
Journal of Zhejiang University Science A(Science in Engineering), 2005, (07) :750-759
[2]   Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications [J].
Xu, Gang ;
Mourrain, Bernard ;
Duvigneau, Regis ;
Galligo, Andre .
COMPUTER-AIDED DESIGN, 2013, 45 (02) :395-404
[3]  
Parameterization of computational domain in isogeometric analysis: Methods and comparison[J] . Gang Xu,Bernard Mourrain,Régis Duvigneau,André Galligo.Computer Methods in Applied Mechanics and Engineering . 2011 (23)
[4]  
On linear independence of T-spline blending functions[J] . Xin Li,Jianmin Zheng,Thomas W. Sederberg,Thomas J.R. Hughes,Michael A. Scott.Computer Aided Geometric Design . 2011 (1)
[5]  
Isogeometric analysis using T-splines[J] . Y. Bazilevs,V.M. Calo,J.A. Cottrell,J.A. Evans,T.J.R. Hughes,S. Lipton,M.A. Scott,T.W. Sederberg.Computer Methods in Applied Mechanics and Engineering . 2009 (5)
[6]   T-spline simplification and local refinement [J].
Sederberg, TW ;
Cardon, DL ;
Finnigan, GT ;
North, NS ;
Zheng, JM ;
Lyche, T .
ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03) :276-283
[7]   T-splines and T-NURCCs [J].
Sederberg, TN ;
Zheng, JM ;
Bakenov, A ;
Nasri, A .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :477-484
[8]  
NUAT B-spline curves[J] . Guozhao Wang,Qinyu Chen,Minghua Zhou.Computer Aided Geometric Design . 2003 (2)
[9]   Uniform hyperbolic polynomial B-spline curves [J].
Lü, YG ;
Wang, GZ ;
Yang, XN .
COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (06) :379-393
[10]   Two different forms of C-B-splines [J].
Zhang, JW .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (01) :31-41