A Note on the Illposedness for Anisotropic Nonlinear Schrdinger Equation

被引:0
作者
Xiao Yi ZHANG Academy of Mathematics and Systems Science
机构
关键词
anisotropic Schrodinger equation; anisotropic Sobolev space; illposedness;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
In this short note,we show the illposedness of anisotropic Schr6dinger equation in L~2 if thegrowth of nonlinearity is larger than a threshold power pwhich is also the critical power for blowup,as Fibich,Ilan and Schochet have pointed out recently.The illposedness in anisotropic Sobolev spaceHwhere 0<s<s,s=d/2-k/4-2/(p-1),and the illposedness in Sobolev space of negative orderH~s,s<0 are also proved.
引用
收藏
页码:891 / 900
页数:10
相关论文
共 6 条
[1]  
Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis[J] . S.U. Siddiqui,N.K. Verma,Shailesh Mishra,R.S. Gupta.Applied Mathematics and Computation . 2007 (1)
[2]   Modeling of arterial stenosis and its applications to blood diseases [J].
Pralhad, RN ;
Schultz, DH .
MATHEMATICAL BIOSCIENCES, 2004, 190 (02) :203-220
[3]   A numerical simulation of viscous flows in collapsible tubes with stenoses [J].
Liu, BY ;
Tang, DL .
APPLIED NUMERICAL MATHEMATICS, 2000, 32 (01) :87-101
[4]   Mathematical modelling of three-dimensional flow through an asymmetric arterial stenosis [J].
Ang, KC ;
Mazumdar, JN .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (01) :19-29
[5]   Suspension model for blood flow through stenotic arteries with a cell-free plasma layer [J].
Srivastava, VP ;
Saxena, M .
MATHEMATICAL BIOSCIENCES, 1997, 139 (02) :79-102
[6]  
Determination of blow-up solutions with minimal mass for nonlinear Schr?dinger equations with critical power[J] . F. Merle.Duke Mathematical Journal . 1993 (2)