Symplectic Convexity for Orbifolds

被引:0
|
作者
Qi Lin YANG Mathematical Department
机构
关键词
momentum map; mod-Γ proper map; symplectic orbifold;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
摘要
Let a connected compact Lie group G act on a connected symplectic orbifold of orbifoldfundamental group Γ.If the action preserves the symplectic structure and there is a G-equivariant andmod-Γ proper momentum map for the lifted action on the universal branch covering orbifold,and ifthe lifted G-action commutes with that of Γ,then the symplectic convexity theorem is still true for thiskind of lifted Hamiltonian action.
引用
收藏
页码:555 / 564
页数:10
相关论文
共 50 条
  • [1] Symplectic convexity for orbifolds
    Yang, Qi Lin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) : 555 - 564
  • [2] Symplectic convexity for orbifolds
    Qi Lin Yang
    Acta Mathematica Sinica, English Series, 2008, 24 : 555 - 564
  • [3] Blowing Up Symplectic Orbifolds
    Leonor Godinho
    Annals of Global Analysis and Geometry, 2001, 20 : 117 - 162
  • [4] Blowing up symplectic orbifolds
    Godinho, L
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2001, 20 (02) : 117 - 162
  • [5] On the index theorem for symplectic orbifolds
    Fedosov, B
    Schulze, BW
    Tarkhanov, N
    ANNALES DE L INSTITUT FOURIER, 2004, 54 (05) : 1601 - +
  • [6] ORBIFOLDS OF SYMPLECTIC FERMION ALGEBRAS
    Creutzig, Thomas
    Linshaw, Andrew R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (01) : 467 - 494
  • [7] Asymptotically holomorphic theory for symplectic orbifolds
    Fabio Gironella
    Vicente Muñoz
    Zhengyi Zhou
    Mathematische Zeitschrift, 2023, 304
  • [8] Symplectic resolution of orbifolds with homogeneous isotropy
    Munoz, Vicente
    Angel Rojo, Juan
    GEOMETRIAE DEDICATA, 2020, 204 (01) : 339 - 363
  • [9] Covering spaces of symplectic toric orbifolds
    Razny, Pawel
    Sheshko, Nikolay
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2025, 67 (01)
  • [10] Symplectic resolution of orbifolds with homogeneous isotropy
    Vicente Muñoz
    Juan Angel Rojo
    Geometriae Dedicata, 2020, 204 : 339 - 363