Efficient ternary organic solar cells based on a twin spiro-type non-fullerene acceptor

被引:0
|
作者
Lirong Wu [1 ]
Lingchao Xie [2 ,3 ]
Hanmin Tian [1 ]
Ruixiang Peng [2 ]
Jiaming Huang [2 ]
Billy Fanady [2 ]
Wei Song [2 ]
Songting Tan [3 ]
Wengang Bi [1 ]
Ziyi Ge [2 ]
机构
[1] School of Electronics and Information Engineering, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology
[2] Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
[3] Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Ternary organic solar cells; High efficiency; Photon harvesting; Charge transport; Energy transfer;
D O I
暂无
中图分类号
TM914.4 [太阳能电池];
学科分类号
080502 ;
摘要
A novel small-molecule(SM) acceptor DTF-IC is designed and synthesized in this work. The power conversion efficiency(PCE) of ternary OSCs increased up to 12.14% from 10.90% by incorporating 10 wt% of DTF-IC as second acceptors into the binary OSCs consisting of PBDB-T as donor and IT-M as acceptor. This was mainly due to the large increase in short-circuit current(Jsc) from 16.18 to 17.95 mA/cm~2, without any drop in the open-circuit voltage(Voc) and fill factor(FF). The addition of DTF-IC enabled the donor and acceptor to form a distinct complementary absorption profile in the visible-light region, which boosted the photon harvesting in the range of 730–800 nm and consequently increased the Jscof the ternary system by 11%. Moreover, there was an energy transfer between the two SM acceptors, favorable for enhancing charge separation and transfer as well as reducing charge recombination at PBDB-T:IT-M and PBDB-T:DTF-IC interface. Simultaneously, HOMO and LUMO energy levels of DTF-IC were lower than those of PBDB-T, but still higher than those of IT-M. Thus, DTF-IC is able to provide a cascading energy level with the host donor and acceptor which are beneficial for efficient charge transfer between the acceptors and facilitating exciton dissociation and carrier transport. Meanwhile, the highly crystalline DTF-IC as a third component can improve the crystallization process of the active layer while maintaining proper phase separation. This work proposes a novel idea for non-fullerene acceptors achieved via twin spiro-type structure modifying by indanone and provides a new direction for the selection of ternary solar cell materials.
引用
收藏
页码:1087 / 1094
页数:8
相关论文
共 50 条
  • [1] Efficient ternary organic solar cells based on a twin spiro-type non-fullerene acceptor
    Wu, Lirong
    Xie, Lingchao
    Tian, Hanmin
    Peng, Ruixiang
    Huang, Jiaming
    Fanady, Billy
    Song, Wei
    Tan, Songting
    Bi, Wengang
    Ge, Ziyi
    SCIENCE BULLETIN, 2019, 64 (15) : 1087 - 1094
  • [2] Advances in Non-Fullerene Acceptor Based Ternary Organic Solar Cells
    Fu, Huiting
    Wang, Zhaohui
    Sun, Yanming
    SOLAR RRL, 2018, 2 (01):
  • [3] Non-Fullerene Acceptor-Based Nanomorphology Enhancement for Efficient Ternary Organic Solar Cells
    Khanam, Lubna
    Srivastava, Shashi Bhushan
    Do, Thu Trang
    Sonar, Prashant
    Singh, Samarendra Pratap
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2022, 219 (18):
  • [4] Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency
    Donghui Li
    Xiaolong Chen
    Jinglong Cai
    Wei Li
    Mengxue Chen
    Yuchao Mao
    Baocai Du
    Joel A. Smith
    Rachel C. Kilbride
    Mary E. O’Kane
    Xue Zhang
    Yuan Zhuang
    Pang Wang
    Hui Wang
    Dan Liu
    Richard A. L. Jones
    David G. Lidzey
    Tao Wang
    Science China Chemistry, 2020, 63 : 1461 - 1468
  • [5] Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency
    Li, Donghui
    Chen, Xiaolong
    Cai, Jinglong
    Li, Wei
    Chen, Mengxue
    Mao, Yuchao
    Du, Baocai
    Smith, Joel A.
    Kilbride, Rachel C.
    O'Kane, Mary E.
    Zhang, Xue
    Zhuang, Yuan
    Wang, Pang
    Wang, Hui
    Liu, Dan
    Jones, Richard A. L.
    Lidzey, David G.
    Wang, Tao
    SCIENCE CHINA-CHEMISTRY, 2020, 63 (10) : 1461 - 1468
  • [6] Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency
    Donghui Li
    Xiaolong Chen
    Jinglong Cai
    Wei Li
    Mengxue Chen
    Yuchao Mao
    Baocai Du
    Joel A.Smith
    Rachel C.Kilbride
    Mary E.O'Kane
    Xue Zhang
    Yuan Zhuang
    Pang Wang
    Hui Wang
    Dan Liu
    Richard A.L.Jones
    David G.Lidzey
    Tao Wang
    Science China(Chemistry), 2020, 63 (10) : 1461 - 1468
  • [7] High-Performance Organic Solar Cells Based on a Non-Fullerene Acceptor with a Spiro Core
    Sun, Hua
    Sun, Po
    Zhang, Cong
    Yang, Yingguo
    Gao, Xingyu
    Chen, Fei
    Xu, Zongxiang
    Chen, Zhi-Kuan
    Huang, Wei
    CHEMISTRY-AN ASIAN JOURNAL, 2017, 12 (07) : 721 - 725
  • [8] Efficient and photostable ternary organic solar cells with a narrow band gap non-fullerene acceptor and fullerene additive
    Lee, Jinho
    Lee, Jong-Hoon
    Yao, Huifeng
    Cha, Hyojung
    Hong, Soonil
    Lee, Seongyu
    Kim, Jehan
    Durrant, James R.
    Hou, Jianhui
    Lee, Kwanghee
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (14) : 6682 - 6691
  • [9] Progress in non-fullerene acceptor based organic solar cells
    Duan, Leiping
    Elumalai, Naveen Kumar
    Zhang, Yu
    Uddin, Ashraf
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 193 : 22 - 65
  • [10] Asymmetric Non-Fullerene Acceptor Derivatives Incorporated Ternary Organic Solar Cells
    Lan, Ai
    Zhu, Jintao
    Zhang, Zhuohan
    Lv, Yifan
    Lu, Hong
    Zhao, Ningxin
    Do, Hainam
    Chen, Zhi-Kuan
    Chen, Fei
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (33) : 39657 - 39668