双助剂促进g-C3N4光解水制氢性能(英文)

被引:31
作者
李纵 [1 ]
马永宁 [1 ]
胡晓云 [2 ]
刘恩周 [1 ,2 ,3 ]
樊君 [1 ]
机构
[1] 西北大学化工学院
[2] 西北大学物理学院
[3] 西北大学现代物理研究所
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
光催化; 光催化制氢; 氮化碳; 银; 硫化镍;
D O I
暂无
中图分类号
O643.36 [催化剂]; TQ116.2 [氢气];
学科分类号
0817 ; 081705 ;
摘要
氢能是最具应用前景的清洁能源之一,利用太阳能作为驱动力光催化水分解制取氢气已被广泛研究.作为非金属半导体光催化剂, g-C3N4具有合适的能带结构(2.71 eV),良好的可见光捕获能力和物理化学稳定性,因而有一定的光催化产氢能力;但是它具有可见光吸收能力(<470 nm)不够、光生电子空穴容易复合等缺点,使其光催化制氢能力受到了极大限制.通过助剂修饰可有效促进载流子分离,增加反应活性位点及加速产氢动力学.因此,本文采用双助剂改性以提高g-C3N4的光催化制氢性能.本文首先采用原位煅烧法将银纳米粒子(AgNPs)沉积在g-C3N4表面(Ag/g-C3N4),随后利用水热法成功地将硫化镍(NiS)负载在Ag/g-C3N4复合材料表面.XRD, FT-IR, XPS和TEM结果表明,通过原位煅烧和水热合成法可以成功地将Ag和NiS均匀、稳定沉积在g-C3N4表面,并且g-C3N4保持原有结构不变.紫外可见吸收光谱(UV-Vis)、瞬态光电流、阻抗(EIS)和光致发光谱(PL)分析表明, AgNPs和NiS的引入不仅改善了体系的光吸收范围和强度,而且显著提高了体系光生电子和空穴的产生、分离性能,有助于提高光子利用效率.其中三元样品的最高光电流可以达到2.94′10–7 A·cm–2,是纯g-C3N4的3.1倍.对系列光催化剂的分解水制氢性能测试发现(采用300 W氙灯作为光源,三乙醇胺作为牺牲剂), 10wt%-NiS/1.0wt%-Ag/CN样品具有最优异的光催化分解水制氢性能,产氢速率可达9.728 mmol·g–1·h–1,是纯g-C3N4的10.82倍,二元10wt%-NiS/CN的3.45倍, 1.0wt%-Ag/CN的2.77倍.三元样品反应前后的XRD特征峰位置没有发生变化,循环四次后样品仍具有83%的催化活性,证明其具有良好的制氢稳定性.10 wt%-NiS/1.0 wt%-Ag/CN样品在可见光下(λ> 420 nm)的制氢量子效率为1.21%.三元体系光催化产氢性能增强的原因在于:(1)Ag纳米颗粒的局域表面等离子体效应使得三元体系的光捕获能力得到提高;(2)Ag NPs和NiS负载在g-C3N4上共同促进了光生电子空穴的产生和分离;(3)Ag NPs和Ni S作为优良的析氢助催化剂沉积在g-C3N4表面上可以有效地提高产氢动力学.本文构建的NiS/Ag/g-C3N4复合体系为g-C3N4基复合光催化剂的设计及制备提供了新的思路.
引用
收藏
页码:434 / 445 +483
页数:13
相关论文
共 4 条
[1]  
Q.Sun,P.Wang,H.G.Yu,X.F.Wang. J.Mol.Catal.A . 2016
[2]  
C. L. Muhich,B. D. Ehrhart,I. Al-Shankiti,B. J. Ward,C. B. Musgrave,A. W. Weimer. Wires Wiley Interdis. Rev. Energy Environ . 2016
[3]  
H. G. Yu,G. Q. Cao,F. Chen,X. F. Wang,J. G. Yu,M. Lei. Applied Catalysis B Environmental . 2014
[4]  
W. Mao,T. Y. Wang,H. Y. Wang,S. Zou,S. X. Liu. J. Mater. Sci-Mater.El . 2018