A Covering Lemma on the Unit Sphere and Application to the Fourier-Laplace Convergence

被引:0
作者
Rong HUANG [1 ]
Kun Yang WANG [2 ]
机构
[1] Department of Mathematics,Tianjin Normal University
[2] School of Mathematical Sciences,Beijing Normal University
关键词
sphere; covering lemma; Fourier-Laplace series; a.e.convergence;
D O I
暂无
中图分类号
O174.21 [正交级数(傅里叶级数)];
学科分类号
070104 ;
摘要
A covering lemma on the unit sphere is established and then is applied to establish analmost everywhere convergence test of Marcinkiewicz type for the Fourier-Laplace series on the unitsphere which can be stated as follows:Theorem Suppose f ∈ L(∑),n≥3.If f satisfies the conditionat every point x in a set E of positive measure in ∑,then the Cesáro means of critical order(n-2)/2of the Fourier-Laplace series of f converge to f at almost every point x in E.
引用
收藏
页码:1327 / 1332
页数:6
相关论文
共 2 条
[1]   球面上Cesàro平均的点态收敛(英文) [J].
王昆扬 .
北京师范大学学报(自然科学版), 1993, (02) :158-164
[2]   Jacobi polynomial estimates and Fourier-Laplace convergence [J].
Brown, G ;
Wang, KY .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (06) :705-714