Weighted quantile regression for longitudinal data using empirical likelihood

被引:0
作者
YUAN XiaoHui [1 ]
LIN Nan [2 ]
DONG XiaoGang [1 ]
LIU TianQing [3 ]
机构
[1] School of Basic Science, Changchun University of Technology
[2] Department of Mathematics, Washington University in StLouis
[3] School of Mathematics, Jilin University
关键词
empirical likelihood; estimating equation; influence function; longitudinal data; weighted quantile regression;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 9 条
[1]   Quantile regression for longitudinal data with a working correlation model [J].
Fu, Liya ;
Wang, You-Gan .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (08) :2526-2538
[2]   Empirical likelihood and quantile regression in longitudinal data analysis [J].
Tang, Cheng Yong ;
Leng, Chenlei .
BIOMETRIKA, 2011, 98 (04) :1001-1006
[3]  
Empirical likelihood for quantile regression models with longitudinal data[J] . Huixia Judy Wang,Zhongyi Zhu.Journal of Statistical Planning and Inference . 2010 (4)
[4]   Power transformation toward a linear regression quantile [J].
Mu, Yunming ;
He, Xuming .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) :269-279
[5]  
Standard errors and covariance matrices for smoothed rank estimators[J] . B. M. Brown,You-Gan Wang.Biometrika . 2005
[6]   Quantile regression for longitudinal data [J].
Koenker, R .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 91 (01) :74-89
[7]  
Improving generalised estimating equations using quadratic inference functions[J] . Annie Qu.Biometrika . 2000
[8]   EMPIRICAL LIKELIHOOD RATIO CONFIDENCE-REGIONS [J].
OWEN, A .
ANNALS OF STATISTICS, 1990, 18 (01) :90-120
[9]  
Quantile Regression Models with Multivariate Failure Time Data .2 Guosheng Yin,Jianwen Cai. Biometrics . 2005