Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica

被引:0
|
作者
张福杰 [1 ]
周保花 [1 ]
刘笑 [1 ]
宋宇 [2 ,3 ]
左旭 [1 ,4 ]
机构
[1] College of Electronic Information and Optical Engineering Nankai University
[2] Microsystem and Terahertz Research Center China Academy of Engineering Physics
[3] Institute of Electronic Engineering China Academy of Engineering Physics
[4] Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin
关键词
molecular dynamics; tensile strain; amorphous SiO2; hydrogen diffusion;
D O I
暂无
中图分类号
O613.72 [硅Si];
学科分类号
摘要
Understanding hydrogen diffusion in amorphous SiO2(a-SiO2),especially under strain,is of prominent importance for improving the reliability of semiconducting devices,such as metal-oxide-semiconductor field effect transistors.In this work,the diffusion of hydrogen atom in a-SiO2under strain is simulated by using molecular dynamics(MD) with the ReaxFF force field.A defect-free a-SiO2atomic model,of which the local structure parameters accord well with the experimental results,is established.Strain is applied by using the uniaxial tensile method,and the values of maximum strain,ultimate strength,and Young’s modulus of the a-SiO2model under different tensile rates are calculated.The diffusion of hydrogen atom is simulated by MD with the ReaxFF,and its pathway is identified to be a series of hops among local energy minima.Moreover,the calculated diffusivity and activation energy show their dependence on strain.The diffusivity is substantially enhanced by the tensile strain at a low temperature(below 500 K),but reduced at a high temperature(above500 K).The activation energy decreases as strain increases.Our research shows that the tensile strain can have an influence on hydrogen transportation in a-SiO2,which may be utilized to improve the reliability of semiconducting devices.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 50 条
  • [31] Quantum molecular dynamics simulation of hydrogen diffusion in zirconium hydride
    Yanilkin, A. V.
    PHYSICS OF THE SOLID STATE, 2014, 56 (09) : 1879 - 1885
  • [32] Quantum molecular dynamics simulation of hydrogen diffusion in zirconium hydride
    A. V. Yanilkin
    Physics of the Solid State, 2014, 56 : 1879 - 1885
  • [33] Molecular mechanics and dynamics simulation of hydrogen diffusion in aluminum melt
    Huo-sheng Wang
    Gao-sheng Fu
    Chao-zeng Cheng
    Li-li Song
    Lian-deng Wang
    China Foundry, 2017, 14 : 478 - 484
  • [34] Molecular mechanics and dynamics simulation of hydrogen diffusion in aluminum melt
    Huo-sheng Wang
    Gao-sheng Fu
    Chao-zeng Cheng
    Li-li Song
    Lian-deng Wang
    China Foundry, 2017, 14 (06) : 478 - 484
  • [35] Molecular mechanics and dynamics simulation of hydrogen diffusion in aluminum melt
    Wang, Huo-sheng
    Fu, Gao-sheng
    Cheng, Chao-zeng
    Song, Li-li
    Wang, Lian-deng
    CHINA FOUNDRY, 2017, 14 (06) : 478 - 484
  • [36] Ab initio molecular dynamics simulation of hydrogen diffusion in α-iron
    Sanchez, J.
    Fullea, J.
    Andrade, M. C.
    de Andres, P. L.
    PHYSICAL REVIEW B, 2010, 81 (13):
  • [37] Molecular dynamics simulation of hydrogen diffusion into brine: Implications for underground hydrogen storage
    Kalati, Seyedeh Saba
    Khiabani, Nahid Pour
    Ayatollahi, Shahab
    Mahani, Hassan
    Zivar, Davood
    Esmaeilbeig, Mohammad Amin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 53 : 17 - 28
  • [38] Molecular dynamics simulation of diffusion of hydrogen in binary hydrogen-tetrahydrofuran hydrate
    Iwai, Yoshio
    Hirata, Masashi
    MOLECULAR SIMULATION, 2012, 38 (04) : 333 - 340
  • [39] Molecular-dynamics analysis of the diffusion of molecular hydrogen in all-silica sodalite
    van den Berg, AWC
    Bromley, ST
    Flikkema, E
    Wojdel, J
    Maschmeyer, T
    Jansen, JC
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (21): : 10285 - 10289
  • [40] Method of accelerating molecular dynamics simulation for atomic diffusion in metallic interface
    Key Laboratory of Ferrometallurgy of Shanghai, Shanghai University, Shanghai 200072, China
    不详
    Wuli Xuebao, 2008, 4 (2392-2398):