On Inclusion of Permutation Modules

被引:0
作者
Li Zhong WANG [1 ]
机构
[1] School of Mathematical Sciences,Peking University
基金
中国国家自然科学基金;
关键词
Permutaion module; Schur’s lemma; Foulkes; conjecture; double cosets;
D O I
暂无
中图分类号
O153.3 [环论];
学科分类号
070104 ;
摘要
Let H1,H2 be subgroups of a finite group G. Assume that G=∪i=1mH2yiH1=∪j=1nH1gjH1 and that y1=1,g1=1.Let Di be the set consisting of right cosets of H2 contained in H2yiH1 and let dj(j=1, . . . ,n) be the set consisting of right cosets contained in H1gjH1.We define the n×m matrix Mz(z=1, . . . ,m) whose columns and rows are indexed by Di and dj respectively and the (dk,Dl) entry is |Dzgk∩Dl|. Let M=(M1, . . . ,Mm). Assume that 1H1G and 1H2G are semisimple permutation modules of a finite group G. In this paper, by using the matrix M , we give some sufficient and necessary conditions such that 1H1G is isomorphic to a submodule of 1H2G.As an application, we prove Foulkes’ conjecture in special cases.
引用
收藏
页码:717 / 728
页数:12
相关论文
共 3 条
[1]   Generalized Foulkes' Conjecture and tableaux construction [J].
Vessenes, R .
JOURNAL OF ALGEBRA, 2004, 277 (02) :579-614
[2]   On Foulkes' conjecture [J].
Doran, WF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (01) :85-98
[3]  
Invariant Theory, Tensors and Group Characters[J] . D. E. Littlewood.Philosophical Transactions of the Royal Society o . 1944 (807)