Let H1,H2 be subgroups of a finite group G. Assume that G=∪i=1mH2yiH1=∪j=1nH1gjH1 and that y1=1,g1=1.Let Di be the set consisting of right cosets of H2 contained in H2yiH1 and let dj(j=1, . . . ,n) be the set consisting of right cosets contained in H1gjH1.We define the n×m matrix Mz(z=1, . . . ,m) whose columns and rows are indexed by Di and dj respectively and the (dk,Dl) entry is |Dzgk∩Dl|. Let M=(M1, . . . ,Mm). Assume that 1H1G and 1H2G are semisimple permutation modules of a finite group G. In this paper, by using the matrix M , we give some sufficient and necessary conditions such that 1H1G is isomorphic to a submodule of 1H2G.As an application, we prove Foulkes’ conjecture in special cases.