Singularity Categories with Respect to Ding Projective Modules

被引:0
作者
Wen Jing CHEN [1 ]
Zhong Kui LIU [1 ]
Xiao Yan YANG [1 ]
机构
[1] Department of Mathematics,Northwest Normal University
基金
中国国家自然科学基金;
关键词
Ding projective module; Ding singularity category; Ding defect category;
D O I
暂无
中图分类号
O153.3 [环论];
学科分类号
070104 ;
摘要
We introduce the singularity category with respect to Ding projective modules, D;(R),as the Verdier quotient of Ding derived category D;(R) by triangulated subcategory K;(DP), and give some triangle equivalences. Assume DP is precovering. We show that D;(R)≌K;(DP)and D;(R)≌D;(R). We prove that each R-module is of finite Ding projective dimension if and only if D;(R) = 0.
引用
收藏
页码:793 / 806
页数:14
相关论文
共 7 条
[1]   From CM-finite to CM-free [J].
Kong, Fan ;
Zhang, Pu .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (02) :782-801
[2]   THE GORENSTEIN DEFECT CATEGORY [J].
Bergh, Petter Andreas ;
Oppermann, Steffen ;
Jorgensen, David A. .
QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (02) :459-471
[3]  
Gorenstein singularity categories[J] . Yanhong Bao,Xianneng Du,Zhibing Zhao.Journal of Algebra . 2015
[4]  
Gorenstein derived equivalences and their invariants[J] . Javad Asadollahi,Rasool Hafezi,Razieh Vahed.Journal of Pure and Applied Algebra . 2013
[5]   Gorenstein derived categories [J].
Gao, Nan ;
Zhang, Pu .
JOURNAL OF ALGEBRA, 2010, 323 (07) :2041-2057
[6]  
Cohen–Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras[J] . Apostolos Beligiannis.Journal of Algebra . 2005 (1)
[7]  
Gorenstein homological dimensions[J] . Henrik Holm.Journal of Pure and Applied Algebra . 2003 (1)