THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN

被引:0
作者
夏卫锋 [1 ]
褚玉明 [2 ]
机构
[1] School of Teacher Education Huzhou Teachers College
[2] Department of Mathematics Huzhou Teachers College
关键词
Gini mean values; Schur convex; Schur harmonic convex;
D O I
暂无
中图分类号
O174.13 [凸函数、凸集理论];
学科分类号
070104 ;
摘要
We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} and Schur harmonic concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈{(a,b):a≤0,b≤0,a|b|1≤0}.
引用
收藏
页码:1103 / 1112
页数:10
相关论文
共 51 条
[11]  
The power and generalized logarithmic means. STOLARSKY K B. The American Mathematical Monthly . 1980
[12]  
The harmonic means of diagonals of doubly-stochastic matrices. Webster R J. Linear and Multilinear Algebra . 1983
[13]  
Harmonic mean,random polynomials and stochastic matrices. Komarova N L,Rivin I. Advances in Applied Mechanics . 2003
[14]  
A note on Schur-convexity of extended mean values. F. Qi. Rocky Mountain Medical Journal . 2005
[15]  
Refined arithmetic,geomtric and harmonic mean inequalities. Mercer P R. Rocky Mountain Journal of Mathematics . 2003
[16]  
An arithmetic-geometric-harmonic mean inequality involving Hadamard products. Mathias R. Linear Algebra and Its Applications . 1993
[17]  
Convex functions with respect to a mean and a characterization of quasi-arithmetic means. Matkowski J. Real Analysis Exchange . 2003/2004
[18]  
On harmonic convexity(concavity)and application to non-linear programming problems. Das C,Mishra S,Pradhan P K. Opsearch . 2003
[19]  
Harmonic convexity and application to optimization problems. Das C,Roy K L,Jena K N. Math Ed . 2003
[20]  
Harmonic convexity of composite functions. Kar K,Nanda S. Proc Nat Acad Sci India Sect A . 1992