THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN

被引:0
作者
夏卫锋 [1 ]
褚玉明 [2 ]
机构
[1] School of Teacher Education Huzhou Teachers College
[2] Department of Mathematics Huzhou Teachers College
关键词
Gini mean values; Schur convex; Schur harmonic convex;
D O I
暂无
中图分类号
O174.13 [凸函数、凸集理论];
学科分类号
070104 ;
摘要
We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} and Schur harmonic concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈{(a,b):a≤0,b≤0,a|b|1≤0}.
引用
收藏
页码:1103 / 1112
页数:10
相关论文
共 51 条
[1]  
Convex functions on complete noncompact manifolds: Topological structure[J] . R. E. Greene,K. Shiohama. &nbspInventiones Mathematicae . 1981 (1)
[2]  
C∞ convex functions and manifolds of positive curvature[J] . R. E. Greene,H. Wu. &nbspActa Mathematica . 1976 (1)
[3]  
Tanabe, Upper and lower bounds for the arithmetic-geometric-harmonic means of positive definite matrices. M Sagae,K. Linear and Multilinear Algebra . 1994
[4]  
An inequality for arithmetic and harmonic means. Alzer,H. Aequationes Mathematicae . 1993
[5]  
Weak majorization inequalities and convex functions[J] . Jaspal Singh Aujla,Fernando C. Silva. &nbspLinear Algebra and Its Applications . 2003
[6]  
A generalization of the notion of convex function. Acz′el J. Norske Vid Selsk Forh Trondhjem . 1947
[7]  
New properties of convex functions in the Heisenberg group. Garofalo N,Tournier F. Transactions of the American Mathematical Society . 2006
[8]  
Convex Functions and Their Applications. Niculescu C P,Persson L E. . 2006
[9]  
Bullen,P. S.,Mitrinovi?,D. S.,Vasi?,P. M. Means and Their Inequalities . 1988
[10]  
Degree of approximation by harmonic means of Fourier-Laguerre expansions. Singh T. Publications Mathematicae Debrecen . 1977