THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN

被引:0
|
作者
夏卫锋
褚玉明
机构
[1] School of Teacher Education Huzhou Teachers College
[2] Department of Mathematics Huzhou Teachers College
关键词
Gini mean values; Schur convex; Schur harmonic convex;
D O I
暂无
中图分类号
O174.13 [凸函数、凸集理论];
学科分类号
070104 ;
摘要
We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} and Schur harmonic concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈{(a,b):a≤0,b≤0,a|b|1≤0}.
引用
收藏
页码:1103 / 1112
页数:10
相关论文
共 12 条
  • [1] THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN
    Xia Weifeng
    Chu Yuming
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (03) : 1103 - 1112
  • [2] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    CHU YuMing1 & XIA WeiFeng2 1 Department of Mathematics
    Science China Mathematics, 2009, (10) : 2099 - 2106
  • [3] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    YuMing Chu
    WeiFeng Xia
    Science in China Series A: Mathematics, 2009, 52 : 2099 - 2106
  • [4] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    Chu YuMing
    Xia WeiFeng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10): : 2099 - 2106
  • [5] NECESSARY AND SUFFICIENT CONDITIONS FOR THE SCHUR HARMONIC CONVEXITY OR CONCAVITY OF THE EXTENDED MEAN VALUES
    Xia, Wei-Feng
    Chu, Yu-Ming
    Wang, Gen-Di
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (01): : 121 - 132
  • [6] The Schur Geometrical Convexity of the Extended Mean Values
    Chu Yuming
    Zhang Xiaoming
    Wang Gendi
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (04) : 707 - 718
  • [7] SCHUR-GEOMETRIC AND SCHUR-HARMONIC CONVEXITY OF WEIGHTED INTEGRAL MEAN
    Kovac, Sanja
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2021, 175 (02) : 225 - 233
  • [8] Schur-Convexity of Generalized Heronian Mean
    Zhang, Tian-yu
    Ji, Ai-ping
    INFORMATION COMPUTING AND APPLICATIONS, PT II, 2011, 244 : 25 - 33
  • [9] SCHUR CONVEXITY PROPERTIES FOR THE ELLIPTIC NEUMAN MEAN WITH APPLICATIONS
    Song, Ying-Qing
    Wang, Miao-Kun
    Chu, Yu-Ming
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (01): : 185 - 194
  • [10] THE SCHUR HARMONIC CONVEXITY FOR A CLASS OF SYMMETRIC FUNCTIONS
    褚玉明
    孙天川
    Acta Mathematica Scientia, 2010, 30 (05) : 1501 - 1506