Streamline-Diffusion Method of a Lowest Order Nonconforming Rectangular Finite Element for Convection-Diffusion Problem

被引:1
作者
Dongyang SHI [1 ]
Hongxin CUI [2 ]
Hongbo GUAN [1 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University
[2] Mathematical Science, Henan College of Traditional Chinese Medicine
关键词
convection-diffusion problem; streamline-diffusion method; error estimate; nonconforming rectangular finite element;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence order as the previous literature is obtained. In which, the jump terms on the boundary are added to bilinear form with simple user-chosen parameter δKwhich has nothing to do with perturbation parameter εappeared in the problem under considered, the subdivision mesh size hKand the inverse estimate coefficient μin finite element space.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 11 条
[1]   NonconformingH1-GalerkinMixedFEMforSobolevEquationsonAnisotropicMeshes [J].
Dongyang ShiHaihong Wang Department of MathematicsZhengzhou UniversityZhengzhouChina .
Acta Mathematicae Applicatae Sinica, 2009, 25 (02) :335-344
[2]   AN ANISOTROPIC NONCONFORMING FINITE ELEMENT METHOD FOR APPROXIMATING A CLASS OF NONLINEAR SOBOLEV EQUATIONS [J].
Dongyang Shi Haihong Wang Department of MathematicsZhengzhou UniversityZhengzhou China Yuepeng Du Department of ComputerNanyang Institute of TechnologyNanyang China .
JournalofComputationalMathematics, 2009, 27(Z1) (Z1) :299-314
[3]   带约束非协调旋转Q1元在Stokes和平面弹性问题的应用 [J].
胡俊 ;
满红英 ;
石钟慈 .
计算数学, 2005, (03) :311-324
[4]  
Superconvergence of a nonconforming low order finite element [J] . Uwe Risch.&nbsp&nbspApplied Numerical Mathematics . 2004 (3)
[5]  
A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems [J] . V. John,G. Matthies,F. Schieweck,L. Tobiska.&nbsp&nbspComputer Methods in Applied Mechanics and Engineering . 1998 (1)
[6]   Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems [J].
John, V ;
Maubach, JM ;
Tobiska, L .
NUMERISCHE MATHEMATIK, 1997, 78 (02) :165-188
[7]   How accurate is the streamline diffusion finite element method? [J].
Zhou, GH .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :31-44
[8]   ADAPTIVE STREAMLINE DIFFUSION FINITE-ELEMENT METHODS FOR STATIONARY CONVECTION-DIFFUSION PROBLEMS [J].
ERIKSSON, K ;
JOHNSON, C .
MATHEMATICS OF COMPUTATION, 1993, 60 (201) :167-188
[9]  
Pointwise error estimates for a streamline diffusion finite element scheme [J] . Koichi Niijima.&nbsp&nbspNumerische Mathematik . 1989 (7)
[10]   CROSSWIND SMEAR AND POINTWISE ERRORS IN STREAMLINE DIFFUSION FINITE-ELEMENT METHODS [J].
JOHNSON, C ;
SCHATZ, AH ;
WAHLBIN, LB .
MATHEMATICS OF COMPUTATION, 1987, 49 (179) :25-38