Hermite-Hadamard Type Inequalities for Operator h-preinvex Functions

被引:0
作者
LIAN TIEYAN [1 ]
TANG WEI [2 ]
机构
[1] College of Arts and Sciences, Shaanxi University of Science and Technology
[2] College of Electrical and Information Engineering, Shaanxi University of Science and Technology
关键词
Hermite-Hadamard’s integral inequality; operator h-preinvex function; operator beta-preinvex function;
D O I
10.13447/j.1674-5647.2019.02.08
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Operator h-preinvex functions are introduced and a refinement of HermiteHadamard type inequalities for such functions is established. Results proved in this paper are more general and some known results are special cases.
引用
收藏
页码:180 / 192
页数:13
相关论文
共 10 条
[1]   Hermite-Hadamard Type Fractional Integral Inequalities for Preinvex Functions [J].
LIAN TIEYAN ;
TANG WEI ;
ZHOU RUI ;
Ji Youqing .
Communications in Mathematical Research, 2018, 34 (04) :351-362
[2]   关于s-凸函数的Hermite-Hadamard型积分不等式的推广(英文) [J].
连铁艳 ;
汤伟 .
数学季刊(英文版), 2018, 33 (03) :278-286
[3]  
Some Integral Inequalities for beta-Preinvex Functions[J] . Muhammad Aslam Noor,Khalida Inayat Noor,Sabah Iftikhar.International Journal of Analysis and Application . 2017 (1)
[4]   SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR THE PRODUCT OF TWO OPERATOR PREINVEX FUNCTIONS [J].
Ghazanfari, A. G. ;
Barani, A. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (02) :9-20
[5]   FRACTIONAL OSTROWSKI INEQUALITIES FOR s-GODUNOVA-LEVIN FUNCTIONS [J].
Noor, Muhammad Aslam ;
Noor, Khalida Inayat ;
Awan, Muhammad Uzair .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 5 (02) :167-173
[6]  
On Hermite-Hadamard Inequalities for ?-Preinvex Functions[J] . Filomat . 2014 (7)
[7]  
Hermite–Hadamard’s type inequalities for operator convex functions[J] . S.S. Dragomir.Applied Mathematics and Computation . 2011 (3)
[8]   Generalized convexity and inequalities [J].
Anderson, G. D. ;
Vamanamurthy, M. K. ;
Vuorinen, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1294-1308
[9]  
Mean value in invexity analysis[J] . Tadeusz Antczak.Nonlinear Analysis . 2004 (8)
[10]  
Some remarks ons-convex functions[J] . H. Hudzik,L. Maligranda.Aequationes Mathematicae . 1994 (1)