Optimal array alignment to deliver high performance in flexible conducting polymer-based thermoelectric devices

被引:0
作者
Shengduo Xu [1 ]
Meng Li [1 ]
Min Hong [2 ]
Lei Yang [3 ]
Qiang Sun [4 ]
Shuai Sun [2 ]
Wanyu Lyu [2 ]
Matthew Dargusch [1 ]
Jin Zou [1 ,4 ]
Zhi-Gang Chen [5 ]
机构
[1] School of Mechanical and Mining Engineering, The University of Queensland
[2] Centre for Future Materials, University of Southern Queensland, Springfield Central
[3] School of Materials Science & Engineering, Sichuan University
[4] Centre for Microscopy and Microanalysis, The University of Queensland
[5] School of Chemistry and Physics, Queensland University of Technology
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
TM619 [其他能源发电]; TQ317 [高分子化合物产品];
学科分类号
0805 ; 080502 ; 0807 ;
摘要
Flexible thermoelectric devices (F-TEDs) show great potentials to be applied in curved surface for power generation by harvesting low-grade energy from human body and other heat sources.However,their power generation efficiency is constrained by both unsatisfactory constituent materials performance and immature device design.Here,we used an optimal alignment of vertically-aligned poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) arrays to assemble a 2.7×3.2 cm~2F-TEDs,exhibiting a maximum power output of 10.5μW.Such a high performance can be ascribed to the outstanding power factor of 198μW m-1K-2by the synergetic effect of both high charge mobility and optimal oxidation level and the optimized array alignment that maximizes the temperature difference utilization ratio across the TE legs.Particularly,optimized leg distance of 6 mm and leg length of 12 mm are determined to realize a high temperature difference utilization ratio of over 95%and a record-high output power density of 1.21μW cm-2under a temperature difference of 30 K.Further,reliable bending(1000 cycles) and stability (240 h) tests indicate the outstanding mechanical robustness and environmental stability of the developed F-TEDs.This study indicates our reasonable device design concept and facile material treatment techniques secure high-performance F-TEDs,serving as a reference for other flexible energy harvesting devices with wide practical applications.
引用
收藏
页码:252 / 259
页数:8
相关论文
共 28 条
  • [1] High thermoelectric and mechanical performance in the n-type polycrystalline Sn Se incorporated with multi-walled carbon nanotubes
    Xin-Yu Mao
    Xiao-Lei Shi
    Liang-Chuang Zhai
    Wei-Di Liu
    Yue-Xing Chen
    Han Gao
    Meng Li
    De-Zhuang Wang
    Hao Wu
    Zhuang-Hao Zheng
    Yi-Feng Wang
    Qingfeng Liu
    Zhi-Gang Chen
    [J]. JournalofMaterialsScience&Technology, 2022, 114 (19) : 55 - 61
  • [2] Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te
    De-Zhuang Wang
    Wei-Di Liu
    Xiao-Lei Shi
    Han Gao
    Hao Wu
    Liang-Cao Yin
    Yuewen Zhang
    Yifeng Wang
    Xueping Wu
    Qingfeng Liu
    Zhi-Gang Chen
    [J]. Journal of Materials Science & Technology, 2022, 106 (11) : 249 - 256
  • [3] Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe
    Ximeng Dong
    Wenlin Cui
    Wei-Di Liu
    Shuqi Zheng
    Lei Gao
    Luo Yue
    Yue Wua
    Boyi Wang
    Zipei Zhang
    Liqiang Chen
    Zhi-Gang Chen
    [J]. Journal of Materials Science & Technology, 2021, 86 (27) : 204 - 209
  • [4] Leaf‐Inspired Flexible Thermoelectric Generators with High Temperature Difference Utilization Ratio and Output Power in Ambient Air[J] Zhou Qing;Zhu Kang;Li Jun;Li Qikai;Deng Biao;Zhang Pengxiang;Wang Qi;Guo Chuanfei;Wang Weichao;Liu Weishu Advanced Science 2021,
  • [5] A high-conductivity n-type polymeric ink for printed electronics[J] Yang Chi Yuan;Stoeckel Marc Antoine;Ruoko Tero Petri;Wu Han Yan;Liu Xianjie;Kolhe Nagesh B.;Wu Ziang;Puttisong Yuttapoom;Musumeci Chiara;Massetti Matteo;Sun Hengda;Xu Kai;Tu Deyu;Chen Weimin M.;Woo Han Young;Fahlman Mats;Jenekhe Samson A.;Berggren Magnus;Fabiano Simone Nature Communications 2021,
  • [6] Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion[J] Xu Shengduo;Hong Min;Shi Xiaolei;Li Meng;Sun Qiang;Chen Qixiang;Dargusch Matthew;Zou Jin;Chen Zhi Gang ENERGY & ENVIRONMENTAL SCIENCE 2020,
  • [7] 3D printing of conducting polymers.[J] Yuk Hyunwoo;Lu Baoyang;Lin Shen;Qu Kai;Xu Jingkun;Luo Jianhong;Zhao Xuanhe Nature communications 2020,
  • [8] Flexible Thermoelectric Materials and Generators: Challenges and Innovations.[J] Wang Yuan;Yang Lei;Shi Xiao-Lei;Shi Xun;Chen Lidong;Dargusch Matthew S;Zou Jin;Chen Zhi-Gang Advanced materials (Deerfield Beach; Fla.) 2019,
  • [9] High-Performance PEDOT:PSS Flexible Thermoelectric Materials and Their Devices by Triple Post-Treatments[J] Shengduo Xu;Min Hong;Xiao-Lei Shi;Yuan Wang;Lei Ge;Yang Bai;Lianzhou Wang;Matthew Dargusch;Jin Zou;Zhi-Gang Chen Chemistry of Materials 2019,
  • [10] Flexible layer-structured Bi<sub>2</sub>Te<sub>3</sub> thermoelectric on a carbon nanotube scaffold.[J] Jin Qun;Jiang Song;Zhao Yang;Wang Dong;Qiu Jianhang;Tang Dai-Ming;Tan Jun;Sun Dong-Ming;Hou Peng-Xiang;Chen Xing-Qiu;Tai Kaiping;Gao Ning;Liu Chang;Cheng Hui-Ming;Jiang Xin Nature materials 2019,