Maximum Likelihood Estimation of the Identification Parameters and Its Correction

被引:2
|
作者
An Kai
机构
关键词
Probability density; Noise; Least square methods; Corrector of maximum likelihood estimation;
D O I
暂无
中图分类号
TP301.6 [算法理论];
学科分类号
081202 ;
摘要
By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of the identification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML) estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error than the least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higher approximating precision to the true parameters than the least square methods.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 50 条
  • [1] Bias correction for weighted maximum likelihood estimation of Weibull shape parameters
    Yang, Xiao-Yu
    Xie, Li-Yang
    Yang, Yi-Feng
    Zhao, Bing-Feng
    Li, Yuan
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (10): : 2764 - 2770
  • [2] The moments of the Gompertz distribution and maximum likelihood estimation of its parameters
    Lenart, Adam
    SCANDINAVIAN ACTUARIAL JOURNAL, 2014, 2014 (03) : 255 - 277
  • [3] Weibull probability plot and maximum likelihood estimation of its parameters
    Bohoris, GA
    Kostagiolas, PA
    MAPLETECH, 1996, 3 (01): : 79 - 84
  • [4] Maximum Likelihood Estimation of ADC Parameters
    Balogh, Laszlo
    Kollar, Istvan
    Sarhegyi, Attila
    2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [5] MAXIMUM LIKELIHOOD ESTIMATION OF REGULARISATION PARAMETERS
    Vidal, Ana Fernandez
    Pereyra, Marcelo
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1742 - 1746
  • [6] Hyperaccurate correction of maximum likelihood for geometric estimation
    1600, Information Processing Society of Japan (05):
  • [7] Maximum likelihood estimation of ordered multinomial parameters
    Jewell, NP
    Kalbfleisch, JD
    BIOSTATISTICS, 2004, 5 (02) : 291 - 306
  • [8] Maximum likelihood estimation of spatial covariance parameters
    Pardo-Iguzquiza, E
    MATHEMATICAL GEOLOGY, 1998, 30 (01): : 95 - 108
  • [9] MAXIMUM-LIKELIHOOD-ESTIMATION OF POPULATION PARAMETERS
    FU, YX
    LI, WH
    GENETICS, 1993, 134 (04) : 1261 - 1270
  • [10] Maximum likelihood estimation of link function parameters
    Dept of Statistics, Iowa State Univ, Ames IA 50011, United States
    Comput Stat Data Anal, 1 (79-87):