New Exact Solutions of Broer-Kaup Equations

被引:0
|
作者
LIU Hong--Zhun
PAN Zu--Liang Department of Mathematics
机构
关键词
Broer-Kaup equations; similarity reductions; exact solution;
D O I
暂无
中图分类号
O411.1 [数学物理方法];
学科分类号
0701 ; 070104 ;
摘要
By a known transformation, (2+1)-dimensional Brioer-Kaup equations are turned to a single equation.The classical Lie symmetry analysis and similarity reductions are performed for this single equation. From some ofreduction equations, new exact solutions are obtained, which contain previous results, and more exact solutions can becreated directly by abundant known solutions of the Burgers equations and the heat equations.
引用
收藏
页码:15 / 18
页数:4
相关论文
共 50 条
  • [41] A series of new exact solutions to the (2+1)-dimensional Broer-Kau-Kupershmidt equation
    Zhi, HY
    Wang, Q
    Zhang, HQ
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1002 - 1008
  • [42] Exact solutions and residual symmetries of the Ablowitz–Kaup–Newell–Segur system
    刘萍
    曾葆青
    杨建荣
    任博
    Chinese Physics B, 2015, 24 (01) : 129 - 135
  • [43] New exact solutions for nonlinear Klein-Gordon equations
    Han, ZX
    ACTA PHYSICA SINICA, 2005, 54 (04) : 1481 - 1484
  • [44] Exact solutions of nonlinear equations
    Yang, L
    Zhu, ZG
    Wang, YH
    PHYSICS LETTERS A, 1999, 260 (1-2) : 55 - 59
  • [45] New classes of exact solutions to general nonlinear equations and systems of equations in mathematical physics
    A. D. Polyanin
    Doklady Mathematics, 2008, 78 : 607 - 611
  • [46] New Explicit and Exact Solutions for the Klein-Gordon-Zakharov Equations
    Hong Bao-jian and Sun Fu-shu(Department of Basic Courses
    Communications in Mathematical Research, 2010, 26 (02) : 97 - 104
  • [47] Exact solutions for coupled mKdV equations by a new symbolic computation method
    Li Bangqing
    Ma Yulan
    INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS, PTS 1 AND 2, 2010, : 184 - 189
  • [48] Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system
    Liu Ping
    Zeng Bao-Qing
    Yang Jian-Rong
    Ren Bo
    CHINESE PHYSICS B, 2015, 24 (01)
  • [49] On exact solutions of nonlinear diffusion equations
    Barannyk A.F.
    Yuryk I.I.
    Ukrainian Mathematical Journal, 2005, 57 (8) : 1189 - 1200
  • [50] Exact solutions of nonlinear wave equations
    Fan, EG
    Zhang, HQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1998, 30 (02) : 309 - 312