A Spatial-Temporal Attention Model for Human Trajectory Prediction

被引:0
|
作者
Xiaodong Zhao [1 ,2 ]
Yaran Chen [3 ]
Jin Guo [1 ,4 ]
Dongbin Zhao [5 ,3 ]
机构
[1] the School of Automation and Electrical Engineering,University of Science and Technology Beijing
[2] the State Key Laboratory of Management and Control for Complex Systems,Institute of Automation, Chinese Academy of Sciences
[3] the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation,Chinese Academy of Sciences
[4] the Key Laboratory of Knowledge Automation for Industrial Processes,Ministry of Education
[5] IEEE
基金
中国国家自然科学基金;
关键词
Attention mechanism; long-short term memory(LSTM); spatial-temporal model; trajectory prediction;
D O I
暂无
中图分类号
TP274 [数据处理、数据处理系统];
学科分类号
0804 ; 080401 ; 080402 ; 081002 ; 0835 ;
摘要
Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.
引用
收藏
页码:965 / 974
页数:10
相关论文
共 50 条
  • [31] Attention based spatial-temporal graph convolutional networks for boiler NOx prediction
    Zhou, Yongqing
    Hao, Dawei
    Fan, Yuchen
    Wen, Xintong
    Wei, Chang
    Liu, Xin
    Zhang, Wenzhen
    Wang, Heyang
    Meitan Xuebao/Journal of the China Coal Society, 2024, 49 (10): : 4127 - 4137
  • [32] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [33] Multi-stage attention spatial-temporal graph networks for traffic prediction
    Yin, Xueyan
    Wu, Genze
    Wei, Jinze
    Shen, Yanming
    Qi, Heng
    Yin, Baocai
    NEUROCOMPUTING, 2021, 428 : 42 - 53
  • [34] STAGNN: a spatial-temporal attention graph neural network for network traffic prediction
    Luo, Yonghua
    Ning, Qian
    Chen, Bingcai
    Zhou, Xinzhi
    Huang, Linyu
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2024, 30 (04) : 413 - 432
  • [35] Dynamic Spatial-Temporal Self-Attention Network for Traffic Flow Prediction
    Wang, Dong
    Yang, Hongji
    Zhou, Hua
    FUTURE INTERNET, 2024, 16 (06)
  • [36] OST-HGCN: Optimized Spatial-Temporal Hypergraph Convolution Network for Trajectory Prediction
    Lin, Xuanqi
    Zhang, Yong
    Wang, Shun
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (03) : 3056 - 3070
  • [37] Adversarial Maritime Trajectory Prediction with Real-time Spatial-Temporal Mutual Influence
    Wang, Jie
    Li, Dan
    Zheng, Zibin
    Ng, See-Kiong
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 852 - 859
  • [38] HSTA: A Hierarchical Spatio-Temporal Attention Model for Trajectory Prediction
    Wu, Ya
    Chen, Guang
    Li, Zhijun
    Zhang, Lijun
    Xiong, Lu
    Liu, Zhengfa
    Knoll, Alois
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (11) : 11295 - 11307
  • [39] Channel attention-based spatial-temporal graph neural networks for traffic prediction
    Wang, Bin
    Gao, Fanghong
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 58 (01) : 81 - 94
  • [40] Spatial-Temporal Attention and Information Reinforcement Network for Machine Remaining Useful Life Prediction
    Li, Xuanlin
    Hu, Yawei
    Wang, Hang
    Liu, Yongbin
    Liu, Xianzeng
    Cao, Zheng
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 4068 - 4078