On Weyl's Theorem for Functions of Operators

被引:0
作者
Jiong DONG [1 ]
Xiao Hong CAO [1 ]
Lei DAI [2 ]
机构
[1] School of Mathematics and Information Science,Shaanxi Normal University
[2] College of Mathematics and Physics,Weinan Normal University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
Spectrum; Weyl’s theorem; functions of operators; compact perturbation;
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
070104 ;
摘要
Let H be a complex separable infinite dimensional Hilbert space. In this paper, a variant of the Weyl spectrum is discussed. Using the new spectrum, we characterize the necessary and sufficient conditions for both T and f(T) satisfying Weyl’s theorem, where f ∈ Hol(σ(T)) and Hol(σ(T)) is defined by the set of all functions f which are analytic on a neighbourhood of σ(T) and are not constant on any component of σ(T). Also we consider the perturbations of Weyl’s theorem for f(T).
引用
收藏
页码:1367 / 1376
页数:10
相关论文
共 50 条
  • [41] Weyl's theorem and Putnam's inequality for class p-wA(s, t) operators
    Rashid M.H.M.
    Chō M.
    Prasad T.
    Tanahashi K.
    Uchiyama A.
    Acta Scientiarum Mathematicarum, 2018, 84 (3-4): : 573 - 589
  • [42] The Equivalence between Property (ω) and Weyl’s Theorem
    Ling Ling ZHAO
    Journal of Mathematical Research with Applications, 2011, (04) : 705 - 712
  • [43] Weyl’s Theorem and Perturbations
    Mourad Oudghiri
    Integral Equations and Operator Theory, 2005, 53 : 535 - 545
  • [44] Perturbations and Weyl's theorem
    Duggal, B. P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2899 - 2905
  • [45] Generalized Weyl’s theorem and spectral continuity for quasi-class (A, k) operators
    Fugen Gao
    Xiaochun Fang
    Acta Scientiarum Mathematicarum, 2012, 78 (1-2): : 241 - 250
  • [46] A note on Weyl's theorem
    Cao, XH
    Guo, MZ
    Meng, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 2977 - 2984
  • [47] Weyl's theorem and perturbations
    Oudghiri, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) : 535 - 545
  • [48] A Note on the Browder's and Weyl's Theorem
    M.AMOUCH
    H.ZGUITTI
    Acta Mathematica Sinica,English Series, 2008, (12) : 2015 - 2020
  • [49] A Note on the Browder’s and Weyl’s theorem
    M. Amouch
    H. Zguitti
    Acta Mathematica Sinica, English Series, 2008, 24
  • [50] α-Weyl's theorem for operator matrices
    Han, YM
    Djordjevic, SV
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (03) : 715 - 722