Existence of Solutions for Three Dimensional Stationary Incompressible Euler Equations with Nonvanishing Vorticity

被引:0
作者
Chunlei TANG Zhouping XIN Department of Mathematics
The Institute of Mathematical Sciences
机构
基金
中国国家自然科学基金;
关键词
Three dimensional stationary incompressible Euler equations; Boundary value condition; Nonvanishing vorticity;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,solutions with nonvanishing vorticity are established for the three dimensional stationary incompressible Euler equations on simply connected bounded three dimensional domains with smooth boundary.A class of additional boundary conditions for the vorticities are identified so that the solution is unique and stable.
引用
收藏
页码:803 / 830
页数:28
相关论文
共 16 条
[1]   Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl [J].
Frewer, M. ;
Oberlack, M. ;
Guenther, S. .
FLUID DYNAMICS RESEARCH, 2007, 39 (08) :647-664
[2]   New Steady and Self-Similar Solutions of the Euler Equations [J].
E. Yu. Meshcheryakova .
Journal of Applied Mechanics and Technical Physics, 2003, 44 (4) :455-460
[3]   Construction of solutions to the two-dimensional stationary Euler equations by the pseudo-advection method [J].
Nishiyama, T .
ARCHIV DER MATHEMATIK, 2003, 81 (04) :467-477
[4]   Pseudo-advection method for the axisymmetric stationary Euler equations [J].
Nishiyama, T .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 (10) :711-715
[5]   On the existence of non-linear force-free fields in three-dimensional domains [J].
Boulmezaoud, TZ ;
Amari, T .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (06) :942-967
[6]  
A special class of stationary flows for two-dimensional euler equations: A statistical mechanics description. Part II[J] . E. Caglioti,P. L. Lions,C. Marchioro,M. Pulvirenti.Communications in Mathematical Physics . 1995 (2)
[7]  
Existence of threedimensional, steady, inviscid, incompressible flows with nonvanishing vorticity[J] . H. D. Alber.Mathematische Annalen . 1992 (1)
[8]  
A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description[J] . E. Caglioti,P. L. Lions,C. Marchioro,M. Pulvirenti.Communications in Mathematical Physics . 1992 (3)
[9]  
Remarks on spectra of operator rot[J] . Zensho Yoshida,Yoshikazu Giga.Mathematische Zeitschrift . 1990 (1)
[10]   EXISTENCE OF STEADY VORTEX RINGS IN AN IDEAL FLUID [J].
AMBROSETTI, A ;
STRUWE, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (02) :97-109