Physiological and molecular responses to cold stress in rapeseed(Brassica napus L.)

被引:0
|
作者
YAN Lei [1 ,2 ]
Tariq Shah [1 ]
CHENG Yong [1 ]
Lü Yan [1 ]
ZHANG Xue-kun [1 ]
ZOU Xi-ling [1 ]
机构
[1] Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs
[2] College of Plant Science and Technology, Huazhong Agricultural University
关键词
Brassica napus L; cold stress; morphological features; molecular regulation; physiological indicators;
D O I
暂无
中图分类号
S565.4 [油菜籽(芸薹)];
学科分类号
摘要
Low temperature is one of the most important abiotic factors inhibiting growth, productivity, and distribution of rapeseed(Brassica napus L.). Therefore, it is important to identify and cultivate cold-tolerant germplasm. The objective of this study was to figure out the mechanism of chilling(4 and 2°C) and freezing(–2 and –4°C) stresses along with a control(22°C) in B. napus cultivars(1801 and C20) under controlled environment(growth chamber). The experiment was arranged in a complete randomized design with three replications. Our results exhibited that under chilling and freezing stresses, the increment of proline accumulation, soluble sugar and protein contents, and antioxidant enzyme activity were enhanced more in 1801 cultivar compared with C20 cultivar. At –2 and –4°C, the seedlings of C20 cultivar died completely compared with 1801 cultivar. Hydrogen peroxide(H2 O2) and malondialdehyde contents(MDA) increased in both cultivars, but when the temperature was decreased up to –2 and –4°C, the MDA and H2 O2 contents continuously dropped in 1801 cultivar. Moreover, we found that leaf abscisic acid(ABA) was enhanced in 1801 cultivar under chilling and freezing stresses. Additionally, the transcriptional regulations of cold-tolerant genes(COLD1, CBF4, COR6.6, COR15, and COR25) were also determined using real-time quantitative PCR(RT-q PCR). RT-q PCR showed that higher expression of these genes were found in 1801 as compared to C20 under cold stress(chilling and freezing stresses). Therefore, it is concluded from this experiment that 1801 cultivar has a higher ability to respond to cold stress(chilling and freezing stresses) by maintaining hormonal, antioxidative, and osmotic activity along with gene transcription process than C20. The result of this study will provide a solid foundation for understanding physiological and molecular mechanisms of cold stress signaling in rapeseed(B. napus).
引用
收藏
页码:2742 / 2752
页数:11
相关论文
共 50 条
  • [41] Thin layer drying characteristics of rapeseed (Brassica napus L.)
    Le Anh Duc
    Han, Jae Woong
    Keum, Dong Hyuk
    JOURNAL OF STORED PRODUCTS RESEARCH, 2011, 47 (01) : 32 - 38
  • [42] Potential of genomic selection in rapeseed (Brassica napus L.) breeding
    Wuerschum, Tobias
    Abel, Stefan
    Zhao, Yusheng
    PLANT BREEDING, 2014, 133 (01) : 45 - 51
  • [43] Metabolically engineered male sterility in rapeseed (Brassica napus L.)
    Thomas Engelke
    J. Hirsche
    T. Roitsch
    Theoretical and Applied Genetics, 2011, 122 : 163 - 174
  • [44] Genetic analysis on oil content in rapeseed (Brassica napus L.)
    Wang, Xinfa
    Liu, Guihua
    Yang, Qing
    Hua, Wei
    Liu, Jing
    Wang, Hanzhong
    EUPHYTICA, 2010, 173 (01) : 17 - 24
  • [45] Fixed-bed pyrolysis of rapeseed (Brassica napus L.)
    Onay, O
    Koçkar, OM
    BIOMASS & BIOENERGY, 2004, 26 (03): : 289 - 299
  • [46] Genetic analysis on oil content in rapeseed (Brassica napus L.)
    Xinfa Wang
    Guihua Liu
    Qing Yang
    Wei Hua
    Jing Liu
    Hanzhong Wang
    Euphytica, 2010, 173 : 17 - 24
  • [47] Foaming properties of acylated rapeseed (Brassica napus L.) hydrolysates
    Sánchez-Vioque, R
    Bagger, CL
    Rabiller, C
    Guéguen, J
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 244 (02) : 386 - 393
  • [48] Metabolically engineered male sterility in rapeseed (Brassica napus L.)
    Engelke, Thomas
    Hirsche, J.
    Roitsch, T.
    THEORETICAL AND APPLIED GENETICS, 2011, 122 (01) : 163 - 174
  • [49] Emulsifying properties of acylated rapeseed (Brassica napus L.) peptides
    Sánchez-Vioque, R
    Bagger, CL
    Larré, C
    Guéguen, J
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 271 (01) : 220 - 226
  • [50] Productivity of wheat (Triticum aestivum L.) intercropped with rapeseed (Brassica napus L.)
    Ebrahimi, E.
    Kaul, H. -P.
    Neugschwandtner, R. W.
    Nassab, A. Dabbagh Mohammadi
    CANADIAN JOURNAL OF PLANT SCIENCE, 2017, 97 (04) : 557 - 568